Unmanned Aircraft Systems (UAS) - Metro District Bridge Inspection Implementation

Barritt Lovelace, Principal Investigator Collins Engineers, Inc.

MAY 2021

Research Project
Final Report 2021-13

To request this document in an alternative format, such as braille or large print, call 651-366-4718 or 1-800-657-3774 (Greater Minnesota) or email your request to ADArequest.dot@state.mn.us. Please request at least one week in advance.

Technical Report Documentation Page

1. Report No. MN 2021-13	2.	3. Recipients Accession No.
4. Title and Subtitle Unmanned Aircraft Systems (UAS) - Metro District Bridge Inspection Implementation		5. Report Date May 2021
		6.
7. Author(s) Jennifer Wells, PE Barritt Lovelace, PE		8. Performing Organization Report No.
9. Performing Organization Name and Address Collins Engineers, Inc. 1599 Selby Avenue, Suite 206 St. Paul, MN 55104		10. Project/Task/Work Unit No. 11. Contract (C) or Grant (G) No. (c) 1031084
12. Sponsoring Organization Name and Address Minnesota Department of Transportation Office of Research \& Innovation 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899		13. Type of Report and Period Covered Final Report 14. Sponsoring Agency Code
15. Supplementary Notes https://www.mndot.gov/research/reports/2021/202113.pdf		
16. Abstract (Limit: 250 words) Drones for bridge inspection research has been completed by MnDOT in multiple phases since 2015. As of summer, 2017, Phase III of this research began using the SenseFly Albris and the Flyability Elios, a collisiontolerant drone more suited to confined spaces such as box girders, culverts, or areas that are difficult to access. Due to the success of this research, MnDOT Metro District purchased the Elios drone to supplement bridge inspection access where space is confined and optimal lane closures are prohibited, which has been an on-going issue in the District due to traffic volumes. This project implements drone inspection for the metro bridge inventory and other similar representative structures by creating an inspection plan that identifies bridges best suited for drone use, what parameters govern drone use in bridge inspection, and how unmanned aircraft systems (UAS) can be integrated into standard inspection operations. The project explores relevant technology, including reality modeling software, drone hardware, artificial intelligence, and autonomous flights. This project also delivers the UAS Safety and Operation Manual specific to the Metro District.		
17. Document Analysis/Descriptors Bridges, Inspection, Drones, Unm mining, Computer models, Artificia	nned aircraft systems, Data intelligence	18. Availability Statement No restrictions. Document available from: National Technical Information Services, Alexandria, Virginia 22312
19. Security Class (this report) Unclassified	20. Security Class (this page) Unclassified	21. No. of Pages 22. Price 142

UNMANNED AIRCRAFT SYSTEMS (UAS) - METRO DISTRICT BRIDGE INSPECTION IMPLEMENTATION

FINAL REPORT

Prepared by:
Jennifer L. Wells, P.E.
MnDOT Bridge Office

Barritt Lovelace, P.E.
Collins Engineers, Inc.

May 2021

Published by:
Minnesota Department of Transportation
Office of Research \& Innovation
395 John Ireland Boulevard, MS 330
St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation or Collins Engineers, Inc. This report does not contain a standard or specified technique.

The authors, the Minnesota Department of Transportation, and Collins Engineers, Inc. do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to this report.

ACKNOWLEDGMENTS

This report would not have been possible without the support of the professionals at the Minnesota Department of Transportation and our industry partners. This research was both a local and national effort. Local bridge owners volunteered their structures as case studies and industry partners contributed by volunteering their time to demonstrate and assist with technology and software solutions. Their input, hard work, ideas, and enthusiasm for this study were critical to the success of the project. The following team members contributed in a significant way to this project:

Kevin Western, MnDOT state bridge engineer
Edward Lutgen, MnDOT bridge construction and maintenance engineer
Katie Flemming, MnDOT research performance and implementation manager
Elizabeth Kleman, MnDOT research project development engineer
Nancy Daubenberger, MnDOT deputy commissioner and chief engineer
Amber Blanchard, MnDOT major projects manager
Mike Arsenau, MnDOT Metro District senior engineer
Scott Theisen, MnDOT Office of Bridges and Structures
Joe Campbell, Federal Highway Administration
Cassandra Isackson, MnDOT aeronautics director
Kati Gilmore, MnDOT UAS program administrator
Bruce Hasbargen, Beltrami County
Marc Parker, Collins Engineers, Inc.
Matt O'Dell, Collins Engineers, Inc.
Tanner Wild, Collins Engineers, Inc.
Cody Dilger, Collins Engineers, Inc.
Kyle Nicks, Collins Engineers, Inc.
Emily Donovan, Collins Engineers, Inc.
Joseph Bahous, Intel
Cory Knittel, Skydio
Bibhuti Aryal, Bentley Systems, Inc.
Greg Demchak, Bentley Systems, Inc.
Anna Assama, Bentley Systems, Inc.

TABLE OF CONTENTS

CHAPTER 1: Introduction 1
1.1 Research Background and objectives 1
1.1.1 Phase I - Unmanned Aerial Vehicle Bridge Inspection Demonstration Project 2
1.1.2 Phase II - Unmanned Aircraft System Bridge Inspection Demonstration Project 4
1.1.3 Phase III - Improving the Quality of Bridge Inspection using Unmanned Aircraft Systems (UAS) 6
CHAPTER 2: Technology Review 9
2.1 CollIsion Tolerant and Obstacle Avoidance UAS 10
2.1.1 Flyability Elios 10
2.1.2 Skydio 2 12
2.2 Consumer Grade UAS 15
2.2.1 Parrot Anafi 16
2.3 Commercial Grade UAS 18
2.3.1 Intel Falcon 8+ 18
2.3.2 Sensefly Albris 21
2.4 Terresterial Imaging Platforms 22
2.4.1 Point and Shoot Cameras 23
2.4.2 Commercial DSLR Cameras 24
2.4.3 Smart Phone Cameras 24
2.5 Processing Technologies 25
2.5.1 Post Processing Technologies 25
2.5.2 Processing and Modeling Accessory Hardware 28
2.6 Field Testing and Calibration 33
2.6.1 Carver County Survey and AeroPoint Accuracy Report 33
2.6.2 UAS Imaging Payload Test 34
2.6.3 QR Code Distance Test with Pix4D Tagger 44
2.6.4 Computer Processing Comparison 47
CHAPTER 3: Bridge List Candidate Selection 53
3.1 Selection Criteria 53
3.2 Implementation 53
CHAPTER 4: UAS Implementation in the Field 55
4.1 St. Croix Crossing Bridge 55
4.1.1 UAS Operation 56
4.1.2 Mission Scope 56
4.1.3 Deliverables 57
4.1.4 Findings 58
4.2 I-394 @ Dunwoody On and Off Ramps 59
4.2.1 Mission Scope 59
4.2.2 Deliverables 62
4.2.3 Findings 65
4.3 Blatnik Bridge 9030 Inspection 66
4.3.1 Mission Scope 68
4.3.2 Deliverables 69
4.3.3 Findings 70
4.4 SHV Bridge 71
4.4.1 Mission Scope 71
4.4.2 Deliverables 72
4.5 Tettegouche Bridge 73
4.5.1 UAS Operation 74
4.5.2 Mission Scope 74
4.5.3 Deliverables 75
4.6 Stone Arch Bridge Inspection and Rehabilitation Project 78
4.6.1 Mission Scope 79
4.6.2 UAS Implementation Workflow 81
4.6.3 Deliverables 83
4.6.4 Findings 89
4.6.5 Conclusion 89
CHAPTER 5: Safety and Operation Manual 91
5.1 Overview 91
CHAPTER 6: Conclusion and Recommendations 92
6.1 Program Application 92
6.2 Initial Implementation 92
6.3 Sustained Implementation 92
REFERENCES 93
APPENDIX A Unmanned Aircraft Systems (UAS) Safety and Operation Manual 94
APPENDIX B MnDOT Metro District Prioritized UAS Bridge List 1

LIST OF FIGURES

Figure 1-1 Overall Photographs of Four Bridges Selected for Phase I UAS Inspection (Shown clockwise from upper right, Arcola Bridge, Morrison County Pedestrian Truss, Chisago County Bridge, Oronoco Concrete Arch)3
Figure 1-2 Overall Photograph of Four Bridges Selected for Phase II UAS Inspection 5
Figure 1-3 Phase III UAS Enhanced Deliverables 7
Figure 2-1 Elios Rolling Along an Abutment Bearing Seat. 11
Figure 2-2 Elios 2 Protective Frame with Unobstructed View 12
Figure 2-3 Elios 2 Dust Proof Lighting Comparison 12
Figure 2-4 Skydio 2 13
Figure 2-5 Skydio 2 Generated Point Cloud Environment Between Bridge Beams 13
Figure 2-6 Skydio 2 Flying in Tight Area Using Obstacle Avoidance 14
Figure 2-7 Skydio Bridge Inspection Video 15
Figure 2-8 Image of Concrete Spall from the Anafi Thermal 16
Figure 2-9 Parrot Anafi 17
Figure 2-10 Intel Falcon 8+ Platform 19
Figure 2-11 Intel Falcon 8+ Cockpit Controller 19
Figure 2-12 Intel Mission Control Flight Plan 20
Figure 2-13 Sensefly Albris TripleView Payload 22
Figure 2-14 Point and Shoot Digital Camera for Photogrammetry 23
Figure 2-15 DSLR Digital Camera for Photogrammetry 24
Figure 2-16 Custom Built Post Processing 25
Figure 2-17 Pix4D Cloud Virtual Inspection Tool 26
Figure 2-18 Fuji Film AI Crack Detection on Bridge 27
Figure 2-19 Fuji Film AI Crack Detection on Bridge Deck Close Up 28
Figure 2-20 Propeller AeroPoint UAS Survey Target 29
Figure 2-21 QR Code Targets Created and Used in Phase IV 29
Figure 2-22 QR Code Targets Adhered to a Stone Face 30
Figure 2-23 Pix4D Tagger QR Code Example with Numbering Convention of the Key Points 30
Figure 2-24 Pix4D GCP/MTP Editor Screenshot Showing Points Automatically Inserted on a QR Code. 31
Figure 2-25 Microsoft Hololens 2 31
Figure 2-26 Holographic Overall Bridge View from HoloLens 2 32
Figure 2-27 Holographic Close Up View of Bridge from HoloLens 2 32
Figure 2-28 Pix4D Ground Control Point Editor Showing a Propeller AeroPoint 33
Figure 2-29 Skydio Image Comparisons at Determined Distances. 35
Figure 2-30 Skydio Resolution Test at Several Angles From 10' 39
Figure 2-31 Anafi Resolution Test at Several Angles from 10' 40
Figure 2-32 Intel Falcon 8+ Resolution Test at Several Angles From 10' 41
Figure 2-33 Skydio's Full Image at 100 Feet From the Visual Test Board 42
Figure 2-34 Anafi's Full Image at 100 Feet From the Visual Test Board 43
Figure 2-35 Intel Falcon 8+'s Full Image at 100 feet From the Visual Test Board 44
Figure 2-36 Pix4D Screenshot with the Locations Of Each Shot Taken During the Test 45
Figure 2-37 Pix4D Screenshot in Basic GCP/MTP Editor With Notes 46
Figure 2-38 Pix4D Tagger Test Results 46
Figure 2-39 Chart Showing the Match Percentage Dropping After 80 Feet. 47
Figure 2-40 Computer 1 Quality Report Step 1 48
Figure 2-41 Computer 1 Quality Report Step 2 48
Figure 2-42 Computer 2 Quality Report Step 1 49
Figure 2-43 Computer 2 Quality Report Step 2 49
Figure 2-44 Computer 3 Quality Report Step 1 50
Figure 2-45 Computer 3 Quality Report Step 2 50
Figure 2-46 Computer 4 Quality Report Step 1 51
Figure 2-47 Computer 4 Quality Report Step 2 51
Figure 2-48 Computer 5 Quality Report Step 1 51
Figure 2-49 Computer 5 Quality Report Step 2 52
Figure 2-50 Table of Computing Power Processing Test Results 52
Figure 4-1 St. Croix Crossing Bridge. 55
Figure 4-2 St. Croix Crossing Bridge Inspection Planning Map 56
Figure 4-3 St. Croix Crossing Bridge Flight Plans 57
Figure 4-4 St. Croix Crossing Bridge 3D Photolog 58
Figure 4-5 RC Imaging Platform with GoPro Camera Cluster 61
Figure 4-6 Flyability Inspector Screenshot. 62
Figure 4-7 Bridge 27831A Deck with Measurements in Pix4D Cloud 63
Figure 4-8 27831A Deck using the Inspector Mode in Pix4D Cloud 63
Figure 4-9 Unfolded Views of a Box Girder Model, Left Being Untraced and the Right Traced 64
Figure 4-10 3D Model of a Cell. 64
Figure 4-11 Thermal Snapshot of a Dunwoody Bridge Deck 66
Figure 4-12 Overall Photo of the Blatnik Bridge 67
Figure 4-13 Preplanned Flights of the Blatnik Bridge 67
Figure 4-14 Aerial View of the Intel Drone Collecting Data 68
Figure 4-15 Intel Drone Collecting Data 69
Figure 4-16 Pix4D Cloud Data for the Blatnik Bridge. 70
Figure 4-17 Timber Culvert Imaging Flight Path 71
Figure 4-18 Metal Pipe Arch Interior Model Imaging Path 72
Figure 4-19 3D Model Snapshot View with Closeups of Areas of Concern 73
Figure 4-20 Tettegouche Bridge 74
Figure 4-21 Tettegouche Bridge Flight Plan 75
Figure 4-22 Tettegouche Bridge Pix4D Cloud Model Virtual Inspector Tool 76
Figure 4-23 Tettegouche Bridge Pix4D Cloud Model with Inspection Notes 76
Figure 4-24 Tettegouche Bridge Modeled in Context Capture 77
Figure 4-25 Tettegouche Bridge Context Capture Model Close Up View 77
Figure 4-26 Overall Photo of the Stone Arch Bridge 78
Figure 4-27 Preplanned Flights of the Stone Arch Bridge 79
Figure 4-28 Video of Falcon 8+ Performing Inspection 80
Figure 4-29 Aerial View of the Intel Drone Collecting Data 80
Figure 4-30 Intel Drone Collecting Data 81
Figure 4-31 Reality Model of Spans 17-22 82
Figure 4-32 Reality Model of Spans 17-22 With Inspection Notes 82
Figure 4-33 3D Reality Model of Stone Arch Bridge During River Drawdown 83
Figure 4-34 Reality Model Zoomed in to Pier During River Drawdown 84
Figure 4-35 2D Orthomosaic Overall 85
Figure 4-36 2D Orthomosaic Medium Close Up 85
Figure 4-37 2D Orthomosaic Close Up 85
Figure 4-38 ContextCapture Insights AI Crack Detection 86
Figure 4-39 Virtual Inspection of Bridge Using Microsoft Hololens 2 87
Figure 4-40 Hololens Inspection Defect Notation 88
Figure 4-41 Hologram Virtual Inspection Process 88

LIST OF ABBREVIATIONS

3D	Three-Dimensional
UAS	Unmanned Aircraft System
AASHTO	American Association of State Highway and Transportation Officials
ADT	Average Daily Traffic
BSIPM	Bridge and Structure Inspection Program Manual
CFR	Code of Federal Regulations
Core	Commonly Recognized Structural Elements
DSLR	Digital Single-Lens Reflex
FAA	Federal Aviation Administration
FC	Fracture Critical
FCM	Fracture Critical Member
FHWA	Federal Highway Administration
FPV	First Person View
GCP	Ground Control Point
GPS	Global Positioning System
HDR	High Dynamic Range
IRT	Infrared Thermography
JSON	JavaScript Object Notation
LOS	Line of Sight
LRFD	Load Resistance Factor Design
MBE	AASHTO Manual for Bridge Evaluation
MNDOT	Minnesota Department of Transportation
MT	Magnetic Particle Testing
MUTCD	Manual of Uniform Traffic Control Devices

MTP	Manual Tie Point
NBI	National Bridge Inventory
NBIS	National Bridge Inspection Standards
NCHRP	National Cooperative Highway Research Program
NDE	Non-destructive Evaluation
NDT	Non-destructive Testing
NHI	National Highway Institute
NRHP	National Register of Historic Places
PPE	Personal Protection Equipment
QR	Quick Response (QR Codes)
SI\&A	Structure Inventory and Appraisal
SIMS	Structure Information Management System
TH	Trunk Highway
TL	Team Leader
UBIV	Under Bridge Inspection Vehicle
UT	Ultrasonic Testing
UTG	Ultrasonic Thickness Gage

EXECUTIVE SUMMARY

Bridges are important components of our transportation system, and maintaining these structures is critical to ensuring the safety of the traveling public. Inspection of bridges is fundamental to programming maintenance and corrective actions necessary to ensure a healthy and functioning transportation system. Bridge safety inspections are mandated by federal law and the collection of inspection data can be costly and time consuming, and inspections contain inherent risks for the bridge inspectors and the traveling public. Unmanned aircraft systems (UAS) have proven to be a low cost and low risk way to supplement bridge inspection efforts in Minnesota. Technology from both a hardware and software standpoint continues to evolve making UAS use more accessible to bridge inspectors and deliverables are increasingly more beneficial.

As part of this research project, UAS was applied to many different bridge inspections for several different purposes. The bridges ranged from small simple structures to large, river-crossing, signature bridges. The data collected was integrated into the bridge inspection reports mostly by including links in the report to cloud-based, web-sharing platforms.

MnDOT has recently purchased a fleet of drones in addition to the Flyability Elios that is already owned by MnDOT Metro District. The purchase and use of these new drones will exponentially increase the implementation of UAS for bridge inspections within MnDOT. This implementation will benefit MnDOT by lowering inspection costs, improving quality, and improving safety for bridges inspectors and the traveling public. It will also provide an additional access tool, supplementing the use of under-bridge inspection vehicles (UBIV) and rope access.

As part of this research project, a risk based prioritized list was developed for Metro District bridges that would benefit from drone inspections based on parameters conducive to UAS use. These parameters included average-daily-traffic (ADT), feature intersected, bridge type, bridge conditions, and a record of previous successful UAS inspections.

The bridges were sorted by score, with higher scores representing bridges that are more likely to benefit from UAS inspection from both a risk and benefit standpoint. Several of the bridges on the list were inspected as part of this project and results can be found in Chapter 4 of this report. This list can be used in the future to help identify bridges that can be inspected by the Elios drone.

Several case studies are presented in this report demonstrating different applications for using UAS for bridge inspections. These efforts are included as part of this report, but all work was part of actual inspection projects. These results are incorporated into the bridge inspection record. UAS technology has developed to the point where field work and post processing has become routine. The efficiencies gained from technological advances and from experience are significant. For example, the Blatnik Bridge located in Duluth was part of the Phase II Research Project, and one week was spent in the field with a team of 6 people who covered only a small portion of the main spans. In this phase of research, a team of two people completed the entire UAS inspection in less than one day and gathered data for the entirety of the main spans.

An Unmanned Aircraft Systems (UAS) Safety and Operation Manual was developed as part of this project. The intent of the manual was to provide a risk-based approach in evaluating when to use UAS for bridge inspections based on hardware and software that MnDOT uses for bridge inspections. Also included were best practices to guide UAS operators and help minimize the risk of incidents, which could cause damage to the drone or property or cause injuries. The manual was based on several years of experience with drone use within MnDOT and while risks cannot be completely eliminated, following the manual will minimize risks significantly.

UAS have proven to be a low-cost and low-risk way to supplement bridge inspection efforts in Minnesota. Technology for both hardware and software is evolving making UAS more accessible to bridge inspectors and making the deliverables more beneficial. Artificial intelligence, mixed reality, holograms, autonomous flights, computer vision, and reality modeling are no longer technologies that our industry looks forward to but are available now and have been used by Collins Engineers and MnDOT. This report demonstrates how the technologies work for bridge inspections, giving examples and use cases that demonstrate the benefits.

CHAPTER 1: INTRODUCTION

1.1 RESEARCH BACKGROUND AND OBJECTIVES

Bridges are important components of our transportation system, and maintaining these structures is critical to ensuring the safety of the traveling public and protecting these public investments. Inspection of bridge structures is fundamental to determining the maintenance schedule and corrective actions necessary to establish a healthy and functioning transportation system. The National Bridge Inspection Standards (NBIS) set minimum requirements for bridge inspections including inspector qualifications, inspection intervals and inspection procedures. The NBIS was implemented into federal law in 1968. As of November 2019, the NBIS was in the process of Proposed Rule Changes which would significantly change the NBIS requirements. Proposed changes include an expanded extent of inspection, stating "Any portion of the bridge not visible using standard access methods must be assessed via another method". Phases I, II and III of this research project presents the cost effectiveness and increased safety of inspection through the use of Unmanned Aircraft Systems (UAS). For the purpose of this report, the terms UAS and drone are used interchangeably. Combined with the rapid development of UAS technology and regulation, UAS implementation has been proven to be an effective, efficient, and safe tool for visual access to components otherwise not visible using standard methods.

The first two phases of the project, Phase I and II, were carried out in the summers of 2015 and 2016, respectively. The primary scope of these phases was to evaluate UAS technology as a tool for bridge inspection. The third phase, Phase III, was carried out in the summer of 2018 and focused on the application of UASs in the inspection of various bridge types and configurations. As this research has progressed, the focus has shifted from if UASs can be used, to where and how can UASs be used. The resulting studies were published by MnDOT's Research Services. These phases outline the definition of UAS hardware, processing software, FAA regulation, and various methods of implementation.

Due to the success of the research thus far, MnDOT Metro District purchased the Elios UAS to supplement bridge inspection access where space is confined and optimal lane closures are prohibited, which has been an on-going issue in the District due to traffic volumes. In addition, as of spring 2020 the MnDOT Bridge Office is in the process of developing a statewide UAS program for structure inspection. The program will provide necessary means and methods to both state and local agencies to inspect bridge components using state issued UASs.

Phase IV of the research effort implements drone inspection to the Metro bridge inventory by creating an inspection plan that would identify situations best suited for UAS use, what parameters govern UAS use in bridge inspection, and how UAS could be integrated into standard inspection operations. This project also develops a UAS Safety and Operation Manual specific to bridge inspections and is applicable to the MnDOT Bridge Office Statewide UAS Program.

1.1.1 Phase I - Unmanned Aerial Vehicle Bridge Inspection Demonstration Project

1.1.1.1 Scope

This project phase, completed in 2015, demonstrated the use of UAS for bridge inspection, evaluated the technology's effectiveness, and addressed the safety implications for routine bridge inspections.

1.1.1.2 Execution

Investigators identified four bridges in Minnesota that represented a variety of bridge types and sizes: an 80 -foot local bridge in Chisago County, a medium-sized concrete arch bridge in Oronoco, a large steel truss bridge in Morrison County, and a 2,682-foot long railroad bridge near Stillwater that rises 185 feet above the St. Croix River.

Researchers then reviewed current and proposed FAA rules and regulations pertaining to UAS use for bridge inspection and worked with the MnDOT Office of Aeronautics to acquire necessary authorization for inspections. After reviewing UAS options, investigators selected the Aeyron Skyranger UAS and contracted a drone pilot to help conduct inspections of each selected bridge. Researchers compared UAS results to recent bridge inspection records. The Skyranger drone is shown in the photos below.

Figure 1-1 Overall Photographs of Four Bridges Selected for Phase I UAS Inspection (Shown clockwise from upper right, Arcola Bridge, Morrison County Pedestrian Truss, Chisago County Bridge, Oronoco Concrete Arch)

1.1.1.3 Findings

The Aeyron Skyranger UAS provided high-quality detail on the two large bridges, and its zoom lens was effective with the medium-sized concrete arch bridge, allowing viewing and assessment of many bridge element conditions. Smaller bridges with limited clearance underneath proved challenging for the UAS due to loss of GPS signal under concrete decks. As the UAS lost GPS signal, it would then return automatically to its take-off point, or home base. Another barrier of this specific UAS was that the camera mounted underneath the drone could not look up.

Before UAS field work began on any of the selected bridges, detailed investigation and safety plans were prepared for each structure. Site-specific plans addressed safety, potential hazards and how to mitigate them, current FAA rules, and inspection methods. Based on analysis of field work, inspection results, regulations for UAS use, and emerging inspection specific UAS technology, researchers concluded the following:

- UASs can be used for bridge inspection with little risk to inspectors and the public and can reduce safety risks that inspectors currently face. They should be considered a tool in routine inspection and for situations not requiring hands-on inspection, testing, sounding, or cleaning.

They also suit pre-inspection surveys and can identify rope anchor points and other safety needs before hands-on inspection begins.

- UASs provide inspection detail that effectively replicates detail learned through use of snoopers without traffic control at significantly lower costs in equipment and traffic control needs.
- UASs provide both infrared and 3D modeling detail of bridges, effectively identify concrete delamination, gather topographic mapping detail, and efficiently map riverbank conditions upstream and downstream from the bridge sites.
- Inspectors should select a UAS capable of pointing cameras upward and operating without GPS.

1.1.2 Phase II - Unmanned Aircraft System Bridge Inspection Demonstration Project

1.1.2.1 Scope

This project phase aimed to expand the demonstration to different structure types and size utilizing an inspection specific UAS to further assess the ability of a UAS to be a widespread and accepted inspection tool. Technology and federal regulation were further evaluated to refine the inspection method.

1.1.2.2 Execution

This research phase built on Phase I findings and looked at additional Minnesota bridges including a large steel through arch, a steel high truss, a large corrugated steel culvert, and a movable steel truss. Now having acquired a new inspection specific Sensefly Albris shown in the images below, the performance was compared to the industry standards of hands-on inspections. Each method was evaluated by focusing on the differences in access methods, data collection, and the ability of the UAS to be used as a tool for interim and special inspections. FAA rules were explored to determine how practical they were regarding UAS bridge inspection applications.

Before UAS field work began on any of the selected bridges, detailed investigation and safety plans were prepared for each structure. Site-specific plans addressed safety, potential hazards and how to mitigate them, current FAA rules, and inspection methods.

Several imaging devices were tested including still image, video and infrared cameras. After the data collection was completed, data was processed through the computer software Pix4D.

Figure 1-2 Overall Photograph of Four Bridges Selected for Phase II UAS Inspection

1.1.2.3 Findings

Based on the observations in the field from the Phase I and Phase II studies, the following conclusions were made:

- UASs can be used safely and effectively on bridges in challenging conditions.
- UASs can be used in GPS-deprived environments, but piloting skills become more important.
- UASs are more suitable as a tool for inspection of bridges with elements that are difficult to access.
- UASs themselves cannot perform inspections independently and should be used as a tool for qualified and experienced bridge inspectors to view and assess bridge element conditions in accordance with the National Bridge Inspection Standards (NBIS).
- UASs used in conjunction with thermal sensors can be an effective way to detect concrete delaminations and can be done without closing the bridge to traffic.
- The ability to direct cameras 90 degrees upward and the ability to fly without a GPS signal are important features when using this technology as an inspection tool.
- In some types of inspections, UASs have the capability to be used in lieu of an under-bridge inspection vehicle and would provide significant savings. These savings would come in the form
of reduced or eliminated traffic control and reduced use of under bridge inspection vehicles and lifts.
- Safety risks associated with traffic control, working at heights and/or confined spaces, and near traffic could be reduced with the use of UASs.
- UASs can provide important pre-inspection information for planning large-scale inspections. Information such as clearances, rope access anchor points, and general conditions can easily be established with UASs and would aid in the planning of an inspection.
- Utilizing UASs in conjunction with photogrammetry software such as Pix4D can provide a 3D model and point cloud of a bridge and bridge site that is valuable in determining unknown dimensions and provides a high-quality inspection report deliverable.

1.1.3 Phase III - Improving the Quality of Bridge Inspection using Unmanned Aircraft Systems (UAS)

1.1.3.1 Scope

This research phase expanded the implementation of inspection specific UASs to include a larger number of bridge types, sizes, and configurations. Specific consideration was made to use UASs in place of and in addition to standard inspection procedures and access methods. UASs enhanced deliverables were incorporated into inspection reports alongside standard deliverables to facilitate in vetting the work product of UASs.

1.1.3.2 Execution

This research phase implemented UAS technology on 39 bridges including a wide range of bridge size, type, and location. The results of this research effort demonstrated that UAS technology and processing software are effective tools to improve the quality of bridge inspections in addition to improving safety and reducing costs. By applying the technology to a large number of bridges, we were able to understand where the different technologies work the best and were able to determine cost savings and efficiencies gained. Traditional access and reporting methods will continue to be utilized even as UAS technology improves, but they have proven to be another effective tool. This phase identified opportunities to improve the quality of MnDOT inspections, improve safety, and reduce costs.

Figure 1-3 Phase III UAS Enhanced Deliverables

1.1.3.3 Findings

Phase III findings further concluded that the use of UASs as a bridge inspection tool was a valuable and reliable asset for every bridge inspector to have access to. As identified in Phases I and II, UASs play a specific role in bridge inspection. They should not be considered a replacement for required hands on inspection techniques but, rather to be a supplemental tool for inspectors to use in situations where access or environmental factors would otherwise make standard techniques too risky or not possible. Below are some key findings from Phase III:

- FAA and MnDOT Office of Aeronautics regulations continue to change. However, they are becoming increasingly more accepting of the technology and its uses. Through the creation of Part 107, LAANC, and other regulation aids, acquiring permission to fly is now a relatively simple process and possible in a significant portion of statewide airspace. Part 107 is the set of
regulations the FAA has in place for commercial drone operators and LAANC is the system in place to exchange data on to provide Low Altitude and Notification Capabilities.
- UAS hardware selection is important to consider with respect to what the desired outcome and deliverable are, along with the operating environment. Commercial grade UASs remain to be the most reliable, safe, and productive UASs on the market but can carry an expensive price tag. Lower cost consumer UASs are adequate for many jobs, however, they are not a substitute for commercial UASs currently.
- UAS hardware is continuing to adapt to its consumer needs to meet the requirements of FAA and professional grade deliverables. Technology advancements such as sense and avoid technology, automated flight capabilities in GPS denied environments, and improved battery life are significant advancements which could make UAS for bridge inspection even more attractive.
- Data captured during UAS missions can be in many different forms and yield different results. Prior to flying, a pilot or engineer should have an idea of the final desired deliverable and ensure data gathered is optimized to create this product.
- Drone use should be considered as part of a risk-based approach to bridge inspection where safety, cost and quality improvements can be realized.
- Safety risks can be reduced for both inspectors and the public. Much of the focus has been on the safety of flying a UAS, but the emphasis should be on reducing the risk of the overall inspection.
- A collision-tolerant UAS should be considered for confined space inspections where access and safety can be improved without a reduction in inspection quality.
- Collision-tolerant UASs should be considered for the inspection of multi-beam bridges, especially when a hands-on inspection is cost prohibitive.
- Field conditions, including weather, and bridge type, location and configurations vary widely. While image quality is important, the focus should be on the inspector's qualifications, experience and ability to determine if the quality of the data is enough to determine with certainty the structural condition of a bridge.
- Many of the same improved deliverable benefits can be realized by utilizing terrestrial photography. Models of specific bridge components such as piers can be generated in combination with a UAS or by themselves.
- UAS technology has advanced rapidly but their benefits are not being realized due to underutilization. Bridge owners should consider their use when considering inspection quality, cost savings and safety.
- Reality modeling of bridges is revolutionizing the documentation and communication of inspection results. Bridge owners should take advantage of this technology to improve their bridge inspection programs.

CHAPTER 2: TECHNOLOGY REVIEW

UAS technology continues to progress as manufacturers innovate and strive to meet the needs of both commercial and recreational users. The transportation industry is benefiting from these innovations, and the use of UASs for bridge inspections has become more beneficial and accessible in the last five years. Improved sensors, lower costs, better reliability, and collision avoidance are some of the improvements that reduce risks and increase benefits for bridge inspections. The ability to create 3D models provides an additional benefit to inspections.

Recreational use has created a large demand for mid-grade consumer UAS platforms, such as the Parrot Anafi and DJI Mavic. These mid-grade UAS platforms are incorporating technologies which benefit the inspection specific UAS field; however, they still are not a suitable replacement for commercial UAS platforms for many applications. Image quality continues to be a significant differentiator when selecting a drone for bridge inspections.

There is a wide range of uses and deliverables when using UASs for bridge inspection. The selection of an inspection UAS should be based on the environment and goal of the inspection. For example, using a UAS with collision tolerant frames or active obstacle avoidance is a good choice for situations where close-up imagery is required and in locations that are heavily congested or confined. A consumer grade UAS is generally the best selection for overall terrain modeling, imaging of components that are not easily accessible from the ground but have a clear line-of-sight from a higher elevation, or in 3D model generation of smaller structures (generally under 150 feet long). Commercial UAS platforms are used in the same situations as a consumer grade UAS but, can be used on much larger and more complex bridges that have spans in excess of 4,000 feet. A commercial UAS is also preferred when image quality is important, which is often the case in bridge inspections. Commercial quality drones also improve the ability to create 3D models especially for medium and large bridges. Images that are captured with a commercial UAS are higher quality and allow for either a rapid collection of data or a significantly better deliverable.

While individual images of bridge components are a traditional and important aspect for bridge inspections, the ability to create 3D models of bridges allow for improved deliverables. Bridge inspectors can better document bridge conditions and clearly communicate inspection results to bridge owners with 3D models. Reality modeling software allows for still images and video to be processed and analyzed, regardless of the UAS platform used to collect data in the field. Additional new technologies including automatic ground control targets and QR Codes were explored and implemented in field data acquisition for this project. In addition to reality modeling software, this project also explored the use of software for automatic crack detection which is a promising technology that can improve the ability to both identify and quantify defects. These improvements in reality modeling software continue, making it more accessible and feasible on a wider range of bridge inspections.

The following is a summary of the technologies utilized during Phase IV of this study to provide an outlook of how UAS technology is quickly progressing with improved benefits and the removal of
limitations. The technologies discussed include both new and established UAS platforms, equipment, and software.

2.1 COLLISION TOLERANT AND OBSTACLE AVOIDANCE UAS

As part of the Phase II study, it was identified that there are many areas within bridge inspection that are prohibitive for imaging using a larger mapping UAS. Additionally, these are often the same areas that are very difficult, or even impossible, for inspectors to gain visual or tactile access due to environmental hazards and entry restrictions. The concept of a collision-tolerant UAS was explored as part of the Phase II study. The concept of obstacle avoidance was explored as part of the Phase IV study. Other options were considered to access these hard to reach areas with a smaller micro-UAS, larger propeller shrouds, or additional acoustic anti-impact sensors. Some benefits and limitations of both UAS platforms utilized in this phase are listed in the following.

2.1.1 Flyability Elios

MnDOT purchased an Elios in 2018 for use in confined space and close-quarters bridge inspection. At the time of purchase, the collision-tolerant was the most cost-effective option. Some of the benefits and limitations of the Elios are listed below.

Recognized benefits of an inspection specific collision-tolerant UAS are the following:

- Risk of damage is very low.
- Ability to navigate areas of a bridge that are difficult to access.
- Ability to roll: The protective frame can serve as a rolling device to better control the UAS, save battery life, and maintain a fixed distance from the face of an object. It was ideal for inspecting wide flange beams and concrete deck soffits by rolling the UAS along the top side of the bottom flanges.

Figure 2-1 Elios Rolling Along an Abutment Bearing Seat.

- Set-Up: Due to the simplicity of the equipment and interactive flight type, set up and site assessment are quick processes (typically 5 minutes).
- Lighting: The UAS is equipped with on-board lighting which is required due to fluctuating light/dark environments and proximity to elements.
- Safety for the inspector can be greatly improved by eliminating the need for confined space entries, risks associated with access equipment, and working from heights.
- Safety for the traveling public can be improved by eliminated traffic control and lane closures.

Recognized limitations of an inspection specific collision-tolerant UAS:

- Short battery life: The added weight of the protective frame and equipment reduces the allowable battery size, and thus reduces the battery life. A single battery operating under proper piloting conditions and operation yielded an average of 10 minutes of flight time, which limits its range and coverage. Swapping batteries is a quick process which mitigates this limitation.
- Video Interference: The protective frame is outside the video payload, meaning the frame will always be in the video partially obstructing the view.
- Air Flow and Debris: While operating in confined areas or near object surfaces, the UAS can create air flow eddies which affect the UAS flight. In addition, operating in close proximities to surfaces kicks up dirt and debris which can damage the propellers and interfere with video quality.
- The approximate cost of the Elios 2 drone is $\$ 35,000$ USD.

Since Phase II of this study, Flyability has released a second generation of the Elios, the Elios 2. It was not implemented in the field for this study, but many of the new features on the Elios 2 address some of the disadvantages and have new benefits for bridge inspection. Benefits of the Elios 2 include:

- Fixed Frame: The protective frame has been fixed and an opening has been implemented near the camera to create an unobstructed view for the 4 K and Thermal cameras. This makes creating 3D models from the UAS possible.

Figure 2-2 Elios 2 Protective Frame with Unobstructed View

- Dust Proof Lighting: The Elios 2 contains a 10,000 lumen lighting package that is offset from the camera to help eliminate overexposing images with close proximity to dust and debris.

Figure 2-3 Elios 2 Dust Proof Lighting Comparison

- GPS-Free Stability and Obstacle Avoidance: Using cameras and on-board sensors, the Elios 2 creates a virtual bubble around itself to stabilize and avoid contacting surfaces. This also allows a distance lock feature for easier navigation and viewing.

2.1.2 Skydio 2

The Skydio 2 is manufactured by Skydio as displayed in the image below is the second UAS platform made produced by Skydio. The Skydio 2 was initially marketed to adventure enthusiasts for cinematic use but has also been developed with inspection specific enterprise features includes the ability to use obstacle avoidance with a shorter 1 foot range. The environment in which this UAS was created require autonomous flight through dense wooded areas and AI (Artificial Intelligence) capable of real-time
navigation around obstacles. To accomplish this, the Skydio has a state-of-the-art obstacle avoidance and object sensing technology. Skydio produces and develops UAS in the United States.

Figure 2-4 Skydio 2

The Skydio's autonomy system and navigation camera system consist of a high-speed video processor and an on-board camera payload which create a real-time point cloud of the world around it. The onboard processor can create over 1 million points per second at a rate of 500 iterations per second. The camera payload for navigation consists of 6 cameras in a triangular configuration on the top and bottom. Each camera is a 4 k Sony sensor with a super fisheye lens (200-degree field of view) creating a 360-degree coverage of the environment around the camera. The generation of a 3D real-time point cloud in conjunction with AI based autonomous flight makes the Skydio an ideal candidate for flying in close proximity to bridge members, confined space and through bridge trusses.

Figure 2-5 Skydio 2 Generated Point Cloud Environment Between Bridge Beams

Figure 2-6 Skydio 2 Flying in Tight Area Using Obstacle Avoidance
The onboard primary camera system consists of a Sony 12.3MP sensor capable of 12MP HDR still-photos or 4k HDR video. While this resolution of imagery is on the lower end of professional cameras, the ability to fly within inches of an object or surface makes the 12MP sensor more than adequate for bridge inspection. The following are some benefits and limitations of the Skydio 2 that have been recognized as a result of this study.

Recognized benefits of the Skydio 2:

- Approximate price tag of $\$ 2,500$ USD (Jan. 2021) Which includes the hard case and additional batteries. Enterprise features cost and additional \$1,500 per year.
- 3D point cloud-based obstacle avoidance
- Rigid frame construction provides for a more rugged and reliable platform
- 4k HDR video capabilities allows for ideal images in all lighting conditions
- GPS receiver for accurate position data, image tagging, and stabilization
- 23-minute battery life

Recognized limitations of the Skydio 2:

- Low resolution primary camera makes the UAS less than ideal for large area mapping or bridge modeling.
- Six navigation cameras on top and bottom with hemispherical lenses are exposed and has the potential to get scratched if not properly stored or cared for.
- No onboard lighting for internal confined space inspection
- Any moisture collection on the navigation cameras will prohibit flight

The results of exploring the use of collision-tolerant and obstacle avoidance UASs in bridge inspection were overwhelmingly positive. The relative ease of use and minimal set up make the collision-tolerant and obstacle avoidance UASs a great addition to an inspector's toolbox. With a price tag of approximately $\$ 2,500$ USD (Jan. 2021), the Skydio 2 provides many of the benefits of the Elios at a lower cost. The Skydio 2 is certainly a tool for inspectors, which will help image previously difficult to reach or inaccessible bridge components. A video detailing the implementation of the Skydio 2 Drone for Bridge Inspections can be found here:

Figure 2-7 Skydio Bridge Inspection Video

2.2 CONSUMER GRADE UAS

Consumer-grade UAS platforms are beneficial due to their ease of use and general wide availability. Many consumer-grade UAS platforms can be purchased at retail stores or online at retail sites such as Amazon. Additionally, consumer-grade UASs are typically small, light, and easily transportable. They typically have a price tag around \$1,000 USD. These attributes make consumer-grade UAS platforms ideal for routine inspection practices and modeling of bridges 150 feet long or less. For this study we used the Parrot Anafi, but many other similar drones exist with similar features such as the DJI Mavic.

The Anafi UAS platform is manufactured by Parrot. Parrot is the parent company of SenseFly who created the Albris and Ebee. Due to the successes of the Albris, Parrot built in many of the essential inspection specific features into the Anafi. One major feature is the ability for the gimbal to pan 180 degrees vertically up or down. The Anafi has a primary camera capable of 21 MP wide field, HDR still images, or 4k HDR video. The Anafi also features a 2.8 x optical zoom for lossless (non-digital) image magnification and an ISO range of 100 to 3200 for excellent performance in low-light conditions. A thermal version of the Anafi is also on the market which contains an onboard FLIR Lepton 3.5 radiometric thermal camera.

Figure 2-8 Image of Concrete Spall from the Anafi Thermal
The Parrot Anafi folds up into a roughly 10in $x 3$ in $x 3$ in block which makes it very portable. It can be flown from either a controller using a tablet or phone as the screen or flown from a phone or tablet directly. Several phone apps such as Pix4DCapture and Drone Deploy provide excellent on-site mission planning for near commercial-grade quality of aerial mapping and 3D modeling. The Anafi is not manufactured in China which makes it a candidate for use with government sectors such as military or the Department of Defense.

Figure 2-9 Parrot Anafi
The Anafi has onboard acoustic sensors, a GPS receiver, and a propriety digital stabilization technology which all aid in flight stabilization. The UAS is programmed with return to home features and geofence options to provide a safe and reliable working environment. The UAS has a battery loaded weight of 13.60 and can withstand sustained winds of up to 31 mph . These features make the Anafi a safe UAS option and low risk in comparison to other standard methods of bridge inspection. The following are some benefits and limitations of the Anafi that have been recognized as a result of this study:

Recognized benefits of the Anafi:

- 21MP HDR still camera ideal for terrain mapping and modeling
- Small carry size makes easy to deploy in the field
- Easy to set up and to fly
- Lightweight and poses no greater risk to public than a medium size bird
- Low cost compared to commercial UAS platforms
- Small profile provides limited distraction to surrounding public
- Camera gimbal capable of looking vertically up or down

Recognized limitations of the Anafi:

- Limited mission planning software
- Limited use in high wind or moist conditions
- No on-board obstacle avoidance
- Folding frame not as durable as a fixed frame
- Lack of reliability
- Lack of customer support

2.3 COMMERCIAL GRADE UAS

Commercial UAS platforms typically vary from consumer UAS platforms by price and quality of product. The two commercial UASs discussed below are the Intel Falcon 8+ and the Sensefly Albris. They both carry a price tag into the 10's of thousands (Feb 2020) and boast high resolution camera payloads with extensive mission planning software. These commercial UAS platforms carry all the benefits of the consumer grade UASs with added safety, reliable mission planning, and execution features. It was realized during Phase IV that environmental factors such as locations (urban vs. rural), distance of flight, and size of bridge govern what UAS platform is best selected. The largest differentiator with commercial UAS is image quality. Commercial UAS typically have image sensors with at least double the resolution of consumer grade drones. Also important is the reliability of commercial UAS and the flight planning software that typically is far more sophisticated than consumer UAS.

2.3.1 Intel Falcon 8+

The Intel Falcon 8+ UAS is a commercial platform featuring best-in-class redundant hardware, GPS, and sensor package with a high-end image payload. The Intel UAS consists of a rigid frame with 8 rotors, cockpit controller, interchangeable imaging payload mounted on a front center gimbal, and uses propriety Intel software for mission planning and post processing. This model can fly under bridge decks, and the camera can look straight up. The battery last for 15 minutes for a typical mission but with the high-resolution sensor this drone can collect a large amount of data per flight. A typical inspection mission can collect 375 42MP images in one flight. This UAS was used extensively throughout Phase IV. Overall, the experience and deliverable created using the Intel Falcon 8+ was the highest quality that has been achieved throughout all four phases of this research project.

The Intel Falcon 8+ features carbon fiber frame construction consisting of 2 rail bars in a V-shape. Each rail houses 4 rotors. At the center of the V is the payload and processing housing. The configuration of rotors allows for flight in wind speeds in excess of 30 mph . Furthermore, the lightweight construction provides best in class weight to payload ratio for excellent flight time. The V-shape provides for an unobstructed field of view from vertical down, 180 degrees to vertical up. The onboard electronic and hardware system features triple redundant flight control with three redundant Internal Measurement Units for quick and reliable data processing of position, altitude and orientation for excellent responsiveness and stability. The 8 rotors, dual batteries, and multiple communication links also offer built-in redundancy for optimal safe operation.

Figure 2-10 Intel Falcon 8+ Platform
The cockpit controller is the main control interface with the Falcon 8+ platform. The controller features a built in 8 -inch touch screen display for imaging and flight planning and a designated 2 -inch system information display for system vitals. The controller has two main joysticks similar to traditional UAS platform controls. However, the right joystick has an additional rotational sensor which makes single hand flight control possible at a set altitude. Toggle switches built into the sides of the controller allow for image payload operation with a single hand. With the innovations of this controller, it is possible for a single pilot to flawlessly fly a manual mission at a given altitude while simultaneously operating and manipulating the imaging payload.

Figure 2-11 Intel Falcon 8+ Cockpit Controller
The interchangeable imaging payload of the Falcon $8+$ is what sets this UAS apart from other Commercial UAS platforms on the market. Several payloads exist for this platform. Two that stand out specifically are the survey package consisting of a Sony Alpha 7R full frame DSLR camera and the inspection package consisting of a near-infrared and full frame DSLR camera. The Sony Alpha 7R camera
contains a full frame 36MP sensor with photography industry leading processing for excellent imaging in all lighting conditions and optimal image color and sharpness characteristics. The inspection package integrates infrared with full frame photography or high-definition video for real time image overlays and the ability to accurately locate and stamp defects in the field.

Intel Mission Control is a proprietary software suite created by Intel for mission planning for the Falcon $8+$. The software features several mission types which can each be flown in series and edited to suit any flight condition. The software also allows for importing digital surface models created from higher altitude initial site flights. This provides a detailed background 3D image to plan flight missions.

Figure 2-12 Intel Mission Control Flight Plan
The realized benefits of the Intel Falcon 8+ UAS is the high quality, high precision images that allows for optimal inspection through post processing and a platform that is highly redundant, safe, and resilient to wind, electromagnetic, or various other external influences. Some of the realized limitations of the UAS is the high cost and lack of obstacle avoidance. The overall experience with the Intel Falcon 8+ was very positive, and it proved to be a reliable and durable platform for a best-in-class imaging payload.

Recognized benefits of using the Intel Falcon 8+ UAS:

- Ability to view vertically up and down
- Option of pre-programmed flight or interactive flight (manual flight controls)
- Most advanced flight planning software on the market for complex 3D flights
- High-Resolution high quality images
- Ability to fly without GPS signal
- Up to 15 minutes of usable flight time
- Ability to collect a large amount of data in a short amount of time
- Hardware and software are both resilient and reliable

Recognized limitations of the Falcon 8+ drone:

- Not suited for flight within confined space
- Size of drone and controller makes it difficult to transport easily in the case

2.3.2 Sensefly Albris

This UAS was used in Phase II and III, and then was partially replaced by the use of the Intel Falcon 8+ in Phase IV. Given the overwhelming positive results from Phases II and III, this UAS is still a very suitable and useful tool in inspection. The manufacturer, Sensefly has discontinued the production of the Albris and has halted the progression of their quadcopter development program. Sensefly's parent company, Parrot, has produced the Anafi which implements some of the advantages of the Albris at a much lower cost.

The SenseFly Albris UAS platform was designed for commercial inspection and mapping purposes. This model can fly under bridge decks, and the camera can view straight up. The Albris UAS can be controlled interactively with a controller or autonomously with a pre-programmed flight. Both flight modes utilize a laptop computer to control the UAS. The flight control software contains the UASs settings, which include a real-time map that displays the UAS's location, live image views, and flight data. The software can also be used to plan and monitor autonomous flights. The UAS is approximately 22 inches by 32 inches by 7 inches and weighs 3.96 lbs , allowing for easy handling and transportation. The batteries typically provide up to 215 minutes of flight time when operating under safe manufacturer guidelines. Flight hardware restrictions include wind speeds greater than 22 mph , a range that is over 2.8 miles away, or speeds in excess of 26 mph .

Many of the positive physical specifications and limitations of the Albris have been either duplicated or enhanced in the Parrot Anafi. However, the Albris retains its position in the commercial UAS due to the imaging payload which consists of a TripleView head containing a high-definition video camera, a 38 Mega-Pixel (MP) still camera, and an infrared camera. The 38MP camera is the primary data acquisition tool. The absolute horizontal/vertical accuracy of the UAS is reported at 3 ft to 16 ft without using ground control points and down to 0.04 in when using ground control points.

Figure 2-13 Sensefly Albris TripleView Payload

Recognized benefits of using the Albris UAS:

- Ability to view vertically up and down
- Option of pre-programmed flight or interactive flight (manual flight controls)
- High-Resolution Photogrammetry
- Ability to fly without GPS signal
- Up to 20 minutes of usable flight time
- Distance Lock and Cruise Control
- Onboard LED lighting and camera flash

Recognized limitations of using an inspection-specific mapping and photogrammetry UAS:

- Not suited for flight within confined space
- Set-up is time consuming and requires a laptop, stand, antenna, tripod, and a continuous power source for the laptop.

2.4 TERRESTERIAL IMAGING PLATFORMS

This study focused primarily on the implementation of UAS in bridge inspection, but it was quickly realized that the post processing technology could be an asset to inspectors using traditional terrestrial photography. Terrestrial photography refers to the use of an imaging platform which is held or mounted to something founded on the ground. In certain environmental conditions or regulatory situations, UASs
cannot be safely flown but, the ability to develop a model or 3D photo log still exists with the use of post processing software.

2.4.1 Point and Shoot Cameras

Traditionally, inspectors' toolboxes contain a point and shoot digital camera for capturing defect photos. Using traditional cameras is natural to inspectors and thus, can be implemented with a relatively low additional cost for equipment. Photos taken using any modern digital camera can be an input for post processing software, however the deliverables greatly improved if the camera has the following features:

- GPS Location Enabled: Creates a geo-located image to assist post processing software to

Figure 2-14 Point and Shoot Digital Camera for Photogrammetry order and match images for a model or map.

- High resolution sensor: A camera having a 12 MP or greater will allow for a model to be generated and can greatly enhance. In most cases the better resolution, the better the model.
- HDR (High Dynamic Range) Still Imagery: HDR provides excellent photography in all lighting conditions. Often with terrestrial imagery, sky, sun or bridge backgrounds are captured while obscuring the focus on dark elements such as bearing or bridge soffits. HDR imagery assists in consistent image lighting, reducing instances of over or under exposure and saturation.
- Water / Dust / Impact Resistant: Inspection conditions are often in wet, dirty, and tough environments. Waterproof, shockproof, and dustproof camera features provide inspectors a durable and reliable platform with the potential use of underwater imagery for submerged element modeling.

Less traditional to inspectors is DSLR (digital single-lens reflex) cameras. DSLR cameras are commercial grade, high resolution digital cameras. The benefits of these platforms are very highresolution sensors, typically 36MP or more, which yields images that can display small defects from relatively far distances. The user input settings create better quality images in low light conditions or high-speed photography but requires the user to have a significant understanding of photography. GPS enabled feature are not as common in DSLR cameras and they

Figure 2-15 DSLR Digital Camera for Photogrammetry are much less durable in wet or rough environments, which limits their use in inspections. A variety of aftermarket lenses such as wide angle or optical zoom options are available for these cameras, but not all are recognized by the post processing software. The use and type of a DSLR camera and lenses should be determined and vetted through post processing software prior to implementing in the field.

2.4.3 Smart Phone Cameras

The largest change and increasing potential in photography platforms is smart phones or tablets. Many phone/tablet producers are making their cameras and image processing focal points in their list of features. The significant ease of use, requiring very little knowledge of traditional photography, makes smart phone or tablet imaging a very reliable deliverable. Additionally, smart phones and tablets continue to have increased resolution sensors which compete with or exceed the ability of point and shoot cameras. Most modern smart phones and tablets have excellent GPS signal and are durable and resilient to wet or tough conditions. Most inspectors carry some version of a smart phone and, in lieu of other technologies, can use these for quick on-site imaging. Some smart phones and tablets are introducing (Feb 2020) LiDAR and other imaging payloads as a supplement to their on-board imaging payload which will further set these data acquisition tools apart from traditional point and shoot cameras.

2.5 PROCESSING TECHNOLOGIES

After data is collected in the field in the form of images, GPS tags, ground control and manual tie points the next step is to process that data into deliverables. These deliverables can be in many formats including 3D reality models, 2D orthomosaics and 2D orthoplanes all of which can be geometrically and geospatially correct on the order of sub-centimeter accuracy. These outputs can be used locally or shared with others via cloud platforms. Many software platforms exist to create deliverables and our study is not intended to give recommendations on specific software but, to discuss and compare in general terms the features that are beneficial to bridge engineers. Bridges can be challenging to successfully process because the geometry is complex and mapping the underside of the deck along with the entire bridge takes careful planning and execution in the field. Post processing software is as important as the drone hardware and often gets overlooked in the process. Our team used Pix4D and ContextCapture to process reality models and used Fuji Film Infrastructure Photo Analysis and ContextCapture Insights for artificial intelligence applications.

2.5.1 Post Processing Technologies

2.5.1.1 Computer Configurations

Throughout Phases II, III and again, in Phase IV, computing power was foreseen as an issue in processing 3D models efficiently while still delivering a quality product. In several cases where large bridges were imaged using a full frame DSLR camera using preplanned mission software, the raw data files were exceeding 100GB of imagery. On smaller bridges using manual photography and medium resolution cameras, data collected was still typically exceeding several gigabytes. It was quickly realized that to roll out a deliverable in an efficient timeframe, custom built computers would be required to process all the data. In addition to the computer processing being an issue, transfer of files over the internet or FTP sites became very tedious due to size of files and folder. Cloud-based technology and processing was implemented in Phases II through IV and is still a very efficient method of processing; however, from a security, ownership, and user input standpoint, it is still not capable of handling all jobs.

2.5.1.2 Pix4D Software

Figure 2-16 Custom Built Post Processing

Our team used Pix4D for many of our bridge inspections and there are many benefits to this software. It is relatively easy to learn and use. The cloud sharing platform is very good and provides many tools useful for bridge inspectors. Pix4D stores and displays all original high-resolution images and ties them to each pixel created as a result of that image. This can be thought of as a 3D photo log where a user can view an entire bridge model and select in space where they would like a close-up photo view of. There is also a virtual inspection tool on the cloud platform which allows a
user to click on the model and view images of the area they clicked. This feature is very useful to a bridge inspector to be able to find and compare deficiencies over time.

Pix4D software processes the images taken in the field from a handheld camera or UAS in a .jpg or .tif file format and triangulates the photos to form a 3D interactive model. The model can be used to accurately measure distances, areas, and volumes with GPS located images or GCPs. When completed the model can then be uploaded to the cloud, annotated, and sent as a deliverable. The deliverable can be in either 2D or 3D. Pix4D can produce Orthomosaics from a user-defined orthoplane and index maps (Thermal, etc.) in 2D. For 3D output results, it produces 3D PDF, 3D texture mesh, point cloud, and contour lines. Pix4D can struggle with complex 3D models and can create noise in the models especially at bridge railings. This noise can be removed but this is a manual process which add time to the workflow.

Figure 2-17 Pix4D Cloud Virtual Inspection Tool

2.5.1.3 ContextCapture

ContextCapture from Bentley was the other software package we used in our study. ContextCapture can create many deliverables similar to Pix4D and has similar tools. ContextCapture has a slightly longer learning curve but excels at creating very clean reality models of complex structures. Another advantage is that multiple computers can be used to process one project which can speed up the processing significantly. ContextCapture also seamlessly integrates with Microstation CAD software which many DOT's use as their preferred CAD platform. Models can also be shared via the Projectwise software but requires uses to register with Bentley to view the models.

Collins Engineers and MnDOT have been working with Bentley to use the ContextCapture models in the Microsoft Hololens 2 which is a significant leap forward and presents a unique and effective way to perform virtual inspections. More information can be found in section 2.5.2.1.

2.5.1.4 FujiFilm Infrastructure Photo Analysis

Collins Engineers and MnDOT have been working with FujiFilm Japan on their upcoming Infrastructure Analysis Software. This artificial intelligence software tool automatically detects and classifies cracks on concrete structures. While the tool can find cracks on any concrete bridge element, it is especially effective and useful for mapping deck cracks as the process has been particularly difficult to do in the field because it is time consuming, inaccurate and has safety concerns since lane closures are often necessary. The software classifies cracks by width and the data can be downloaded in a spreadsheet to extract quantities for the bridge inspection database.

Figure 2-18 Fuji Film AI Crack Detection on Bridge

Figure 2-19 Fuji Film AI Crack Detection on Bridge Deck Close Up

2.5.2 Processing and Modeling Accessory Hardware

These types of aids consist of products, targets, or other visual aids that are placed in the field prior to UAS flights and are captured in the images to aid in processing. They can be as simple as paint or chalk markings or unique stickers placed on critical faces. These are easy to apply in the field, but require an understanding of the post processing technology to find the best place to create or install marks. Smart technologies such as survey-grade GPS targets or QR codes can be used by inspectors to achieve higher quality results with less user input in post processing. These smart technologies also must be implemented with an understanding of the post processing software to insure they are compatible and efficient.

2.5.2.1 Propeller AeroPoints

AeroPoints are drone specific aerial targets that record their own position using GPS, which is processed and corrected to ensure survey grade accuracy. Benefits of this technology is that inspectors do not need traditional base and rover surveyors to mark benchmarks prior to flying and these serve as both the GPS collector and the image target in one package. In Phase IV, our team used the Propeller AeroPoints with great success and reliability on inspections as large as 9-mile-long

Figure 2-20 Propeller AeroPoint UAS Survey Target corridor surveys to one-mile long bridge inspection models. The use of these smart targets greatly increases the accuracy of your survey or model from $+\backslash$ - 3 -foot accuracy to sub-inch accuracy.

2.5.2.2 QR Codes

QR Codes (Quick Response Codes) is an adaptation of traditional 1-dimensional bar codes. QR codes contain a 2D matrix of pixels which are unique and can contain location or identification information. Placing QR codes on targets in various places during a bridge inspection site prior to imaging can greatly increase the efficiency of processing and quality of the final product. QR code images are publicly available and were implemented during Phase IV. The size of the QR code was examined to determine the optimum target for a camera resolution at a given distance.

Figure 2-21 QR Code Targets Created and Used in Phase IV Application of QR codes to different mediums were explored to test the durability, reflectivity, ease of application, and longevity of each installation. The type of target and method of adherence was proven to be independent of the specific bridge material and environment; however, the application of QR codes was proven to work in nearly any bridge location or condition.

A bridge design maximizes redundancy not only with loads, they also have repetitive components, geometry, and designs. These repetitive structures bring challenges in post-processing software and
often requires a lot of manual input by creating manual tie points in the 3D models. This difficulty only increases with more complex structures like trusses.

Pix4D software, which was the primary post processing software used in Phase IV, stiches images together by producing a point cloud through computer generated key points called Automatic Tie Points (ATPs). This action is done through Pix4d's initial processing step and any intermediate steps of reoptimizing or rematching run by the software.

If the software is uncertain about surfaces or areas, it may produce a model that is incorrect and requires an engineer to enter Manual Tie Points (MTPs) in the model to improve model accuracy and clarity. This method is generally used after the first step is processed where the user can focus on areas of concern. Once an area is identified to improve, the user cycles through the

Figure 2-22 QR Code Targets Adhered to a Stone Face images calibrated within the chosen area to manually mark or adjust key points. This process can be very tedious and time consuming on large structures.

To alleviate some of this engineer manual processing, Pix4D developed a system called Pix4D Tagger, a tool to implement during the acquisition of the data. This is done by placing custom QR codes recognized by the software, scattered around the subject to be imaged for a 3D model. This frontend step generates artificial points to run in the modeling process as MTPs. These points imported into Pix4D provide extra data for the computer to process allowing more accurate initial model and decreasing manual input required to increase accuracy of a model.

Pix4D Tagger utilizes custom QR codes, each with a unique ID from one another. Each tag creates four individual key points on the corners of the square code identified by the software. These tags can be oriented in anyway throughout the area being imaged as the software can identify the unique code and compute the numbering convention. The image shows an example of a Pix4D QR code and its numbering convention of the artificial key points.

After placing the QR codes throughout the area to be imaged in conspicuous locations, the user can proceed as normal with acquiring UAS or Terrestrial Imagery for a model. The user will then import information from these QR codes into Pix4D as MTPs to aid in processing.

Figure 2-23 Pix4D Tagger QR Code Example with Numbering Convention of the Key Points

Figure 2-24 Pix4D GCP/MTP Editor Screenshot Showing Points Automatically Inserted on a QR Code.

Pix4D tagger is a huge benefit for projects which are complex requiring lots of manual input from the user. It provides extra data for the software to compute and ultimately increases its accuracy and decreases the amount of an engineer's time and effort.

2.5.2.1 Microsoft Hololens 2

Collins Engineers has been working with Bentley in developing software for the Microsoft HoloLens 2 to be able to perform virtual inspections using mixed reality. A 3D reality model can be loaded on a Hololens headset and the user can not only view the virtual bridge in a hologram but, can also make measurements, add notes, add and classify defects and denote elements. This data can then be integrated into the bridge inspection report database as condition codes and quantities. Utilizing mixed reality can allow users to populate

Figure 2-25 Microsoft Hololens 2 or review inspection data from their office and allows for the sharing of bridge inspection data with experts in other locations.

Figure 2-26 Holographic Overall Bridge View from HoloLens 2

Figure 2-27 Holographic Close Up View of Bridge from HoloLens 2

2.6 FIELD TESTING AND CALIBRATION

2.6.1 Carver County Survey and AeroPoint Accuracy Report

The use of AeroPoints, in conjunction with the Intel Falcon8+ UAS platform, was implemented as part of a 9-mile corridor survey for Carver County in Minnesota to obtain a terrain model. This survey technique proved to have many benefits. It provided additional data than a traditional 'base and rover' type survey and was much more efficient and economic than an LiDAR survey. To ensure accuracy and to prove proper calibration of the UAS system using AeroPoints, Carver County surveyors set out 21 Check Points surveyed with traditional base and rover methods. These points were then compared to the final model which utilized 234 individually placed AeroPoints as Ground Control Points. A report was generated which compared the model points to the check point locations and calculated error. These results concluded that with the use of AeroPoints, a UAS survey using a commercial UAS platform can achieve sub-centimeter accuracy of an entire terrain area.

Figure 2-28 Pix4D Ground Control Point Editor Showing a Propeller AeroPoint

UAS systems are the vehicle for data acquisition. For this research, the majority of data acquired was in the format of digital photographs. The quality of each camera payload and resulting photographs were studied as part of this phase and are summarized below. Some considerations include resolution, clarity, contrast, and exposure. Camera attributes were tested and compared on three UAS cameras that were part of the research project. UAS's were the Anafi Parrot, Intel Falcon 8+, and the Skydio 2.

Camera megapixels (MP) is a count of pixels, in millions, the camera can put into a square inch. The greater the data put into an image allows a digital zoom to be clearer and more defined. The importance of this attribute in UAS cameras for inspection directly affects several aspects for producing quality results including, but not limited to, the distance from the structure necessary to take photos, number of photos, and clarity and detection of defects. The three UAS platforms chosen all had different MP counts and sensor size:

- Skydio 2, 12 MP 1/2.3" CMOS
- Anafi Parrot, 21 MP 1/2.4" CMOS
- Intel Falcon 8+, 36 MP Full Frame (35 mm) CMOS

2.6.2.1 Testing Procedure

Several tests were conducted in a field lighting environment. The tests included an optical test, pixel and resolution test with a field of view comparison. The tests were conducted by imaging the same location at predetermined intervals of 10 feet, 20 feet, 50 feet, 75 feet, and 100 feet. The location imaged included a calibrated visual aid situated 20 feet off the ground. Attached on the visual aid was an optical vision test, crack gauges, ruler tape, and resolution test targets.

Figure 2-29 Layout of the Visual Aid Used for Testing.

Each UAS was manually flown on the same flight path to image the visual target at the determined distances. One picture was taken at each distance interval from each camera. Variables were limited as the visual aid included all material needed for the testing therefore, only one photo was needed per distance for each camera. Each photo was cropped and digitally zoomed in to the approximate same size for comparison and were reviewed under typical office settings.

2.6.2.2 Optical Test Results

The focus of this test was to evaluate the visual clarity between cameras at relative distances from an object. Each drone was flown individually and initially compared by itself at the different distances. The following information breaks down the results through visual interpretation of each camera at the different distances.

The Skydio, with a 12 MP 1/2.3" CMOS camera sensor, represented some visual issues after 20 feet when comparing the optical vision test. After 75 feet, line 2 on the optical vision test was difficult to differentiate ' F ' and ' P '.

Figure 2-29 Skydio Image Comparisons at Determined Distances.
The Anafi equipped with a 21 MP 1/2.4" CMOS camera sensor performed better than the Skydio at 50 feet with more distinguished letters on the optical test up to line two at 50 feet. At the 75 feet distance and beyond, the Anafi became less clear although slightly better than the Skydio.

Figure 2-31 Anafi Parrot Image Comparisons at Determined Distances
The Intel Falcon 8+ with the advantage of a 36 MP Full Frame (35 mm) CMOS camera sensor produced a much clearer image up to 75 feet. The 100 -foot distance was still comparable to the Anafi at 50 feet and
the Skydio under 50 feet. This camera produced images that allowed zooming in digitally from a large distance away and maintained respectable clarity.

Figure 2-32 Intel Falcon 8+ Image Comparisons at Determined Distances
The next comparison was between each drone using the parameters modeled after the visual acuity eye exams performed by optometrists. The test compares the actual subject's vision at 20 feet compared to the average human's normal vision. A direct comparison was conducted on the photos at the 20 -foot distance, shown in the picture below.

Figure 2-33 Comparison of the Three Cameras at 20 Feet Zoomed In
When the images were compared, there was a clarity difference in all the camera types. Each camera had a line where the legibility in the optical visual test was no longer clear. The list below summarized the last line that was clearly legible using digital zoom.

- Skydio, line 5 or an eyesight of 20/40
- Anafi, line 7 or an eyesight of $20 / 25$
- Intel, line 9 or an eyesight of 20/18

The fraction designated above represents what the subject would see as legible at 20 feet compared to the standard eyesight. To put the UAS's imaging payload in perspective the standard human eyesight is

20/20, or the last legible line at 20 feet is line 8 . The Intel Falcon $8+$ had a relative sharper vision at twenty feet compared to the standard eyesight which would read line 9 at 18 feet.

Lastly, there was a distinct clarity difference related to the different camera payloads. The below image was a direct comparison of line 7 between all three drones highlighting the clarity differences.

Figure 2-34 Comparison of the Three Cameras at 20 Feet for Line 7 of the Optical Vision Test

2.6.2.3 Resolution Test Results

The focus of the resolution test was to determine the limitations of each camera in visualizing cracks with several variables. The variables included the distance of the camera compared to the subject, the camera, and angle of subject relative to the imaging payload. This test used the same images captured during the visual test with a focus on the resolution test targets.

There were four resolution test targets on the visual aid with two different size targets. One size target was the larger boxes which corresponded with a two-inch square filled with several lines. The smaller boxes corresponded with a one-inch square filled with several lines. The number of lines in each standardized square was represented by the large typed number to the side. For example, the closeup below shows the number ' 30 ' with a smaller box measuring 1 " $\times 1$ '; meaning there were 30 lines in the $1^{\prime \prime} \times 1$ " square or each line being $1 / 30$-inch wide.

Figure 2-35 Closeup of the Resolution Test Target Which Signified 30 Lines in a 1"x1" Square
The significance of this test provided a quantitative way to discover how large a defect, such as a crack, would theoretically need to be to be discovered by means of a UAS imaging. This was done by finding the largest amount of lines in a square while still being distinguished or legible. The image below is an example between clear lines versus blurred ones.

Figure 2-36 Example Showing the Difference Between Distinguished Lines and Undistinguished Lines (Separated by the Red Line)

There were three small target grids presented on the visual aid. Each target was oriented to specific angles relative to the direction normal to the camera lens. This simulated conditions where a drone could not provide a normal line of sight to the structure and resulted in a skewed photo angle. The angles chosen were $0^{\circ}, 30^{\circ}, \& 60^{\circ}$.

The first comparison at 10 feet resulted with the Skydio is shown below. At all skew angles, 20 lines per square were blurry and could not be counted. The largest amount of lines still able to be legible was 10 lines per one inch. This correlated to being able to detect a crack width of $0.1^{\prime \prime}$ at 10 feet away at any angle up to 60 degrees.

Figure 2-30 Skydio Resolution Test at Several Angles From 10'
Another comparison at 10 feet was performed with the Anafi and is shown below. At all skew angles, 30 lines per square were blurry and could not be counted. The largest amount of lines still able to be legible was 20 lines per one inch. This correlated to being able to detect most crack widths of 0.05 " or larger at 10 feet away at any angle up to 30 degrees. At 60 degrees, horizontal lines were still clear at 20 lines per inch with the vertical lines blurred until 10 lines per on inch. Therefore, at a 60 -degree skew it would be understood that a horizontal crack of 0.05 " or larger would be noticed although, a vertical crack would need to be $0.1^{\prime \prime}$ or larger to be noticed.

Figure 2-31 Anafi Resolution Test at Several Angles from 10'
The last comparison at 10 feet was performed with the Intel Falcon 8+ which is shown below. At all skew angles, 50 lines per square were blurry and could not be counted. The largest amount of lines still able to be legible was 40 lines per one inch. This correlated to being able to detect most crack widths of 0.025 " or larger at 10 feet away at any angle up to 30 degrees. At 60 degrees, horizontal lines were clear up to the 40 lines per inch with the vertical lines blurred above 40 lines per inch while vertical lines only started to be visible at 20 lines per inch. At a 60-degree skew, it would be understood that a horizontal crack of 0.025 " or larger would be noticed while vertical cracks would need to be 0.05 " or larger to be noticed.

Figure 2-32 Intel Falcon 8+ Resolution Test at Several Angles From 10'

2.6.2.4 Field of View Test Results

The last comparison of the three cameras was the field of view (FOV) from the images. Images were compared at the 100 -foot distance of the photos taken. The field of view is primarily a factor of the camera lens. The Skydio and Anafi both have fisheye lenses that creates a much larger FOV with a convex lens. When using a fisheye camera, the larger FOV collects on the same sensor, thus the resolution is decreased due to the condensed light waves. A large FOV can be very beneficial when figuring out where an image is in respect to the bridge or other members, but typically produces imagery that is not as clear when reviewing under digital zoom.

The Skydio image shown below has a relatively darker image when compared to the other two cameras. Of all three drones this had the widest shot which included more background and more of the adjacent piers to the target.

Figure 2-33 Skydio's Full Image at 100 Feet From the Visual Test Board

The Anafi Parrot also had a wider shot compared to the Intel and is shown below. Colors were the brightest on this camera. Detail was lost within the shadows when compared to the other images by the Intel and Skydio.

Figure 2-34 Anafi's Full Image at 100 Feet From the Visual Test Board

The Intel's camera is shown below, which had a noticeable narrower field of view. Also, colors observed in this were paler in contrast to the other camera images.

Figure 2-35 Intel Falcon 8+'s Full Image at 100 feet From the Visual Test Board

2.6.3 QR Code Distance Test with Pix4D Tagger

While Pix4D Tagger is an invaluable tool in processing, it has limitations. Like most instruments, if it is not used correctly, it may limit its effectiveness. The importance of having this knowledge could help minimize issues in processes by addressing concerns before starting the project. The first concern to be addressed was at what distance from the camera to a tag would render it ineffective. Understanding this dilemma would provide necessary information for the user to maximize their effectiveness out in the field and in the office when processing.

2.6.3.1 Procedure

A simple test was conducted to evaluate the effectiveness of the QR codes corresponding to its distance away from the camera. The test was performed under conditions at a site that would be considered typical in the field. The Intel Falcon 8+ was chosen to take the photos as it is predominately used on large and complex jobs like the Stone Arch Bridge located in Minneapolis, Minnesota.

The flight plan of the Intel Falcon 8+ was to take a photo starting at an altitude of 20 feet directly over the QR codes and capturing a photo every additional 20 feet up to the altitude of 140 feet. The screenshot below showcases the flight. Each green point represents the location where a photo was taken.

Figure 2-36 Pix4D Screenshot with the Locations Of Each Shot Taken During the Test

After the photos were taken in the field, the images were then modeled using Pix4D with the aid of Pix4D Tagger. After the first and second steps were completed, a visual analysis was done to compare percentage of QR codes lost due to distance and lack of resolution.

2.6.3.2 Results

Each tag was examined through the Basic GCP/MTP Editor. Through this editor, images were automatically color-coded notifying if the Pix4D Tagger recognized the QR code for the individual photo. A recognized QR code created four key points corresponding to the four corners of the unique code as described above. The figure below is a screenshot of how it was visually analyzed.

Figure 2-37 Pix4D Screenshot in Basic GCP/MTP Editor With Notes
Each tag was examined and results of each was noted. A summary of the results is shown below. If a QR code tag was recognized, a ' 1 ' was used, a ' 0 ' represented Pix4D not recognizing the code in the image.

Pix4D Tagger QR Code Recognition Summary							
QR code ID	20 ft	40 ft	60 ft	80 ft	100 ft	120 ft	140 ft
1	1	1	1	1	1	0	0
6	1	1	1	1	0	1	0
8	1	1	1	1	1	0	0
13	1	1	1	1	1	1	0
14	1	1	1	1	1	1	0
24	1	1	1	1	1	0	0
31	1	1	1	1	1	0	0
Percentage of matches per distance	100\%	100\%	100\%	100\%	86\%	43\%	0\%

Figure 2-38 Pix4D Tagger Test Results

2.6.3.3 Conclusion

In summary, all QR codes were fully effective up until a distance above 80 feet. After 80 feet from the camera to the target, accuracy of recognition sharply dissipated. At 100 feet, the success rate of dropped to 86% while 120 feet resulted in 43% of targets recognized. Any QR code 140 feet away was ineffective and it would be reasonable to assume anything beyond this limit would also be ineffective. The chart below visualizes the results of the matches compared to the distance.

Figure 2-39 Chart Showing the Match Percentage Dropping After 80 Feet

2.6.3.4 Limitations

This test was helpful in providing a general understanding of the effectiveness for QR code with Pix4D Tagger relative to the distance of the camera to the QR code. While the test provided valuable insights there are some caveats to consider. These caveats include a variety in imaging devices, a comparison in QR Code sizing and material, angle of the photo relative to the tag, and more photos to compare. Further testing analysis could provide more awareness on how these variables may affect Pix4D Tagger with the focus of creating a superior product by efficient means.

2.6.4 Computer Processing Comparison

Phase IV tested the effectiveness of five different processors at running a model that was previously completed. With a higher photo count, the process will take longer to complete a model, so this test was to show the time required to complete the model using varying levels of processor. This test was completed using the software Pix4D on each computer. The five computer processors compared are as follows in highest to lowest processing power:

- Computer 1: Intel ${ }^{\circledR}$ Core ${ }^{\text {TM }}$ i9-9980XE CPU @ 3.00 GHz (36 CPUs) 3.00 GHz
- Computer 2: Intel ${ }^{\circledR}$ Core $^{\text {TM }}$ i9-9900K CPU @ 3.6 GHz (16 CPUs) 3.6GHz
- Computer 3: Intel ${ }^{\circledR}$ Core $^{\text {TM }} \mathrm{i} 7-8850 \mathrm{H}$ CPU @ 2.60 GHz (12 CPUs) 2.6 GHz
- Computer 4: Intel ${ }^{\circledR}$ Core $^{\text {TM }}$ i7-6820HK CPU @ 2.7GHz (8 CPUs) 2.7 GHz
- Computer 5: Intel ${ }^{\circledR}$ Core $^{\text {TM }} 17-8650 \mathrm{CPU} @ 1.90 \mathrm{GHz}$ (8 CPUs) 2.11 GHz

Each processor ran a model in Pix4d of a retaining wall that had 875 images to stitch together. Pix4D has two steps in creating a model. Step 1: Initial Processing and Step 2: Point Cloud Densification. To make each model run as smoothly and efficiently as possible, the model and the photos were saved onto the internal hard drive. This also made sure no failed internet connection interfered with the processing time. The Pix4D software produces a file called "Quality Report" which gives a detailed summary of what occurred to produce the model. The comparisons came from the details of this report. Below are images taken from the Pix4D Quality Report for each processor.

Summary
(i)

Project	MDOT Retaining Wall R-156-003-010 (C)
Processed	$2020-03-1708: 43: 14$
Camera Mbdel Name(s)	LLCE-7R_FE35mmF2.8ZA_35.0_7360×4912 (RGB)
Average Ground Sampling Distance (GSD)	$0.23 \mathrm{~cm} / 0.09$ in
Time for Inital Processing (without report)	55 m .54 s

Quality Check
(i)

(?) Images	median of 92459 keypoints per image	\bigcirc
(?) Dataset	866 out of 875 images calibrated (98%), all images enabled	-
(?) Camera Optimization	1.02\% relative difference between initial and optimized internal camera parameters	\bigcirc
(3) Matching	median of 14580.3 matches per calibrated image	0
(3) Georeferencing	yes, 10 GCPs (10 3D), mean RMS error $=0.008 \mathrm{ft}$	\bigcirc

Figure 2-40 Computer 1 Quality Report Step 1

Processing Options
(i)

Image Scale	multiscale, $1 / 2$ (Half image size, Default)
Point Density	Optimal
Mnimum Number of Matches	3
3D Textured Mesh Generation	yes
3D Textured Mesh Settings:	Resolution: Medium Resolution (default) Color Balancing: no
LOD	Generated: no
Advanced: 3D Textured Mesh Settings	Sample Density Divider: 1
Advanced: Image Groups	group1
Advanced: Use Processing Area	yes
Advanced: Use Annotations	yes
Time for Point Cloud Densification	$01 \mathrm{h:43m:05s}$
Time for Point Cloud Classification	NA
Time for 3D Textured Mesh Generation	$26 \mathrm{~m}: 08 \mathrm{~s}$

Figure 2-41 Computer 1 Quality Report Step 2

Project	MnDOT Retaining Wall R-156-003-010 (C)
Processed	$2020-03$-18 16:55:58
Camera Mbdel Name(s)	LLCE-7R_FE35mmF2.8Z__35.0_7360×4912 (RGB)
Average Ground Sampling Distance (GSD)	$0.23 \mathrm{~cm} / 0.09$ in
Time for Initial Processing (without report)	$43 \mathrm{~m}: 01 \mathrm{~s}$

Quality Check
(1)

(?) Images	median of 92360 keypoints per image	\bigcirc
(3) Dataset	863 out of 875 images calibrated (98%), all images enabled	\bigcirc
(?) Camera Optimization	1.03\% relative difference between initial and optimized internal camera parameters	\bigcirc
(3) Matching	median of 14648.9 matches per calibrated image	-
(3) Georeferencing	yes, 10 GCPs (10 3D), mean RMS error $=0.007 \mathrm{ft}$	\bigcirc

Figure 2-42 Computer 2 Quality Report Step 1

Processing Options

Image Scale	multiscale, $1 / 2$ (Half image size, Default)
Point Density	Optimal
Mnimum Number of Matches	3
3D Textured Mesh Generation	yes
3D Textured Mesh Settings:	Resolution: Medium Resolution (default) Color Balancing: no
LOD	Generated: no
Advanced: 3D Textured Mesh Settings	Sample Density Divider: 1
Advanced: Image Groups	group1
Advanced: Use Processing Area	yes
Advanced: Use Annotations	yes
Time for Point Cloud Densification	$02 \mathrm{~h}: 19 \mathrm{~m}: 58 \mathrm{~s}$
Time for Point Cloud Classification	NA
Time for 3D Texdured Mesh Generation	$20 \mathrm{~m}: 42 \mathrm{~s}$

Figure 2-43 Computer 2 Quality Report Step 2

Project	MhDOT Retaining Wall R-156-003-010
Processed	2020-03-27 01:04:01
Camera Mbdel Name(s)	ILCE-7R_FE35mmF2.8ZA_35.0_7360×4912 (RGB)
Average Ground Sampling Distance (GSD)	$0.23 \mathrm{~cm} / 0.09 \mathrm{in}$
Time for Initial Processing (without report)	$03 \mathrm{~h}: 09 \mathrm{~m}: 38 \mathrm{~s}$

(?) Images	median of 92459 keypoints per image	\bigcirc
(7) Dataset	868 out of 875 images calibrated (99%), all images enabled	(
(?) Camera Optimization	1.02\% relative difference between initial and optimized internal camera parameters	\bigcirc
(3) Matching	median of 14613.6 matches per calibrated image	\bigcirc
(3) Georeferencing	yes, 10 GCPs (10 3D), mean RMS error $=0.007 \mathrm{ft}$	\bigcirc

Figure 2-44 Computer 3 Quality Report Step 1

Processing Options

(1)

Image Scale	$1 / 2$ (Half image size, Default)
Point Density	Optimal
Mnimum Number of Matches	3
3D Textured Mesh Generation	yes
3D Textured Mesh Settings:	Resolution: Medium Resolution (default) Color Balancing: no
LOD	Generated: no
Advanced: 3D Texured Mesh Settings	Sample Density Divider: 1
Advanced: Image Groups	group1
Advanced: Use Processing Area	yes
Advanced: Use Annotations	yes
Time for Point Cloud Densification	O4h:55m:25s
Time for Point Cloud Classification	NA
Time for 3D Textured Mesh Generation	$25 m: 56$ s

Figure 2-45 Computer 3 Quality Report Step 2

Project	MnDOT Retaining Wall R-156-003-010 (C)
Processed	$2020-03-1316: 39: 13$
Camera Mbdel Name(s)	ILCE-7R_FE35mmF2.8Z__35.0_7360×4912 (RGB)
Average Ground Sampling Distance (GSD)	$0.23 \mathrm{~cm} / 0.09 \mathrm{in}$
Time for Initial Processing (without report)	$02 \mathrm{~h}: 11 \mathrm{~m}: 34 \mathrm{~s}$

Quality Check

(?) Images	median of 92439 keypoints per image	\bigcirc
(?) Dataset	866 out of 875 images calibrated (98\%), all images enabled	\bigcirc
(?) Camera Optimization	1.02% relative difference between initial and optimized internal camera parameters	\bigcirc
(3) Matching	median of 14641.1 matches per calibrated image	\bigcirc
(?) Georeferencing	yes, 10 GCPs (103D), mean RMS error $=0.008 \mathrm{ft}$	-

Figure 2-46 Computer 4 Quality Report Step 1

Processing Options
(i)

Image Scale	multiscale, $1 / 2$ (Half image size, Default)
Point Density	Optimal
Mnimum Number of Matches	3
3D Textured Mesh Generation	yes
3D Textured Mesh Settings:	Resolution: Medium Resolution (default) Color Balancing: no
LOD	Generated: no
Advanced: 3D Texured Mesh Settings	Sample Density Divider: 1
Advanced: Image Groups	group1
Advanced: Use Processing Area	yes
Advanced: Use Annotations	yes
Time for Point Cloud Densification	13h:11m:45s
Time for Point Cloud Classification	NA
Time for 3D Texured Mesh Generation	$31 \mathrm{~m}: 16 \mathrm{~s}$

Figure 2-47 Computer 4 Quality Report Step 2

Summary
(i)

Project	MnDOT Retaining Wall R-156-003-010
Processed	2020-03-17 22:30:46
Camera Model Name(s)	ILCE-7R_FE35mmF2.8ZA_35.0_7360×4912 (RGB)
Average Ground Sampling Distance (GSD)	$0.23 \mathrm{~cm} / 0.09$ in
Time for Initial Processing (without report)	1d:05h:50m:53s

Quality Check
(i)

(?) Images	median of 92400 keypoints per image	©
(?) Dataset	862 out of 875 images calibrated (98%), all images enabled	(
(?) Camera Optimization	1.02% relative difference between initial and optimized internal camera parameters	\bigcirc
(3) Matching	median of 14683.1 matches per calibrated image	\bigcirc
(3) Georeferencing	yes, 10 GCPs (103 B), mean RMS error $=0.007 \mathrm{ft}$	©

Figure 2-48 Computer 5 Quality Report Step 1

Image Scale	multiscale, $1 / 2$ (Half image size, Default)
Point Density	Optimal
Minimum Number of Matches	3
3D Textured Mesh Generation	yes
3D Textured Mesh Settings:	Resolution: Medium Resolution (default) Color Balancing: no
LOD	Generated: no
Advanced: 3D Textured Mesh Settings	Sample Density Divider: 1
Advanced: Image Groups	group1
Advanced: Use Processing Area	yes
Advanced: Use Annotations	yes
Time for Point Cloud Densification	$09 \mathrm{h:12m:10s}$
Time for Point Cloud Classification	NA
Time for 3D Textured Mesh Generation	$36 \mathrm{~m}: 19 \mathrm{~s}$

Figure 2-49 Computer 5 Quality Report Step 2
From the quality reports above, the following information was compiled to allow an easy comparison between each of the processors. This comparison is shown in the table below:

Computer	1	2	3	4	5
Processor	Intel ${ }^{\oplus}$ Core ${ }^{\text {TM }}$ i9-9980XE CPU @ 3.00 GHz (36 CPUs) 3.00 GHz	Intel ${ }^{\oplus}$ Core ${ }^{\text {TM }}$ i9-9900K CPU @ 3.6 GHz (16 CPUs) 3.6GHz	$\begin{gathered} \text { Intel }{ }^{\circledR} \text { Core }^{T M} \mathrm{i} 7-8750 \mathrm{H} \text { CPU @ } \\ 2.20 \mathrm{GHz} \text { (12 CPUs) 2.2GHz } \end{gathered}$	$\begin{gathered} \text { Intel }{ }^{\oplus} \text { Core }^{T M} \text { i7-6820HK CPU @ } \\ 2.7 \mathrm{GHz}(8 \mathrm{CPUs}) 2.7 \mathrm{GHz} \end{gathered}$	$\begin{gathered} \text { Intel }{ }^{\oplus} \text { Core }^{T M} \text { I7-8650U CPU @ } \\ 1.90 \mathrm{GHz} \text { (} 2.11 \mathrm{GHz} \end{gathered}$
Ram	64GB	64GB	32 GB	64GB	16 GB
System Type	64 bit				
Graphics	Nvidia Geforce RTX 2080 Ti	Nvidia Geforce RTX 2080 Ti	Intel ${ }^{(0)}$ UHD Graphics 630	Nvidia Geforce GTX 1070	Intel ${ }^{(®)}$ UHD Graphics 620
Onboard Storage	953 GB	930 GB	475 GB	475 GB	475 GB
Step 1 Process Time	55m54s	43m01s	3h09m38s	2h11m34s	1d05h50m53s
Point Cloud Time	1h43m05s	2h19m58s	4h55m25s	13h11m45s	9h12m19s
3D texture Time	$26 \mathrm{m08s}$	20m42s	25m56s	31m16s	36m19s
Total Time	$3 \mathrm{~h} 05 \mathrm{m07s}$	3h23m41s	8h30m59s	15h54m35s	1d14h54m31s
Images Calibrated	866 of 875	863 of 875	868 of 875	866 of 875	862 of 875

Figure 2-50 Table of Computing Power Processing Test Results
The processing time correlates to the processing power. The higher the power, the faster the computer was able to create the model. Referring to the table above, we can identify that this model took a maximum of 1 day 14 hours 54 minutes 31 seconds, and a minimum of 3 hours 5 minutes and 7 seconds. The difference in time shows that a higher-powered processor is the optimum configuration when creating models.

CHAPTER 3: BRIDGE LIST CANDIDATE SELECTION

3.1 SELECTION CRITERIA

A bridge list was developed for bridges that would benefit from drone inspections based on parameters conducive to UAS inspections. All bridges in the MnDOT Metro District were ranked based on the following five factors:

Feature Intersected

Bridges over waterways are more conducive to UAS applications because the drone is less likely to fly over traffic. Bridges over waterways score 20 points and bridges over roadways is 0 points; however, new proposed rulemaking by the FAA will allow more flights over traffic. An additional score has been calculated to show how the scores and rankings will change when this new rule is in place. This new score ignores the feature intersected. The new rulemaking will dramatically increase the number of bridges eligible for a UAS inspection implementation.

Average Daily Traffic (ADT)

Bridges with ADT of less than 5000 score 20 points, ADT of less than 20000 score 10 points and ADT over 20000 score 0 points.

Bridge Type

With a focus on utilizing the Elios drone for confined space, bridges that could be inspected with the Elios score 20 points, and other bridges score 0 points.

Previous Successful UAS Inspection

Bridges that have previously been successfully inspected utilizing UAS score 25 points, and other bridges score 0 points.

National Bridge Inspection (NBI) Ratings

The use of UAS gives inspectors the ability to collect more data that is higher quality. This score awards 25 points for an average NBI of less than 6, an average NBI of between 7 and 8 receives 10 points, and an NBI of 9 scores 0 points.

3.2 IMPLEMENTATION

The bridges were sorted by score with higher scores representing bridges that would more likely benefit from UAS inspection, both from a risk and benefit standpoint. Several of the bridges on the list were inspected as part of this project and results can be found in Chapter 4 of this report. This list can be used in the future to help identify bridges that can be inspected by the Elios drone or the new drones
purchased by MnDOT which will be coming online soon.. The final sorted bridge list can be found in Appendix B.

CHAPTER 4: UAS IMPLEMENTATION IN THE FIELD

Several case studies are presented below demonstrating different applications for utilizing UAS on bridge inspections. These efforts were included as part of this study, as well as part of inspection projects. The UAS results were incorporated into the bridge inspection record.

4.1 ST. CROIX CROSSING BRIDGE

This case study consists of the results of an UAS bridge modeling and defect mapping of St. Croix Crossing bridge number 82045, TH 36 over St. Croix River in Oak Park Heights, Minnesota. The section of bridge modeled for this phase was unit 3 . Unit 3 is a 6 -span, extradosed cable-stayed, post-tensioned concrete box girder unit spanning a total length of 3,365 feet between Piers 7 and 13 . The unit is comprised of parallel precast box girder segments and carries the two lanes and shoulders of west and eastbound TH 36 and a 12-foot wide barrier-separated trail on the north side of the bridge. Transverse post-tensioning is located at each deck level with cable-stay anchorage. Loads are transferred from the interior box girder webs to the cable-stays. A catwalk is present along the full length of the unit along the bridge centerline. The typical unit width is $98^{\prime}-6^{\prime \prime}$ out-to-out with a depth of 18^{\prime} throughout.

Figure 4-1 St. Croix Crossing Bridge

A two-person crew, consisting of a professional engineer-pilot and a field engineer conducted the UAS inspection. The pilot was certified as a FAA Remote Pilot. The inspection was conducted using a registered UAS and several AeroPoints. The UAS was an Intel Falcon 8+ equipped with a Sony Alpha 7R camera and the majority of flight missions were preplanned using Intel Mission Control software.

During the inspection, the pilot flew the UAS and had direct line of sight and headset communication with the other crew members who also maintained line-of-sight of the UAS. The photos were taken in four sections: Fascia, Deck, Underside, and Piers to achieve a high-resolution 3D model of the bridge. Deck and fascia sections had a preplanned mission to allow for an accurate overlap of each photo of approximately 85 percent. Underside and pier section photos were taken using manual flight control. All photos were taken in a systematic overlapping manner to ensure total photo coverage of the bridge.

4.1.2 Mission Scope

UAS was utilized for two main purposes for this bridge inspection: for planning the inspection and for executing the actual inspection.

Two weeks prior to the inspection, the entire bridge was flown from an altitude of 100 feet and 1200 images were collected. This data was post processed in Pix4D to create a model and a map. Both were used to plan the inspection and provided a visual tool to communicate this plan with a large team of inspectors. The inspection plan map delineated the substructure and span numbers, meeting areas, muster and manhole access locations. The plan was used in the field from phones and tablets to monitor progress and to orient inspectors to their location on the bridge.

Figure 4-2 St. Croix Crossing Bridge Inspection Planning Map

Mapping missions were performed of all the main spans of the bridge using the Falcon 8+ UAS to explore the potential of UAS imaging including:

- the ability to map the entire large-scale bridge
- the difference in quality of a UAS and terrestrial inspections
- the applicability of a 3D model in assisting an inspection team during an in-depth inspection with areas of difficult accessibility

The Falcon 8+ efficiently captured a series photographs to use to map the bridge deck and to create a post-inspection tool to aid in repair plans, quantity estimation and historical documentation. The last indepth inspection that was conducted was used as a control to compare the outcome of the UAS mapped post-inspected bridge. A total of 5,670 images were taken and collected with autonomous flights preprogrammed with Intel's Mission Control Software. Images were collected of the underside of the bridge by placing the Intel drone on the boat and manually triggering photos as the boat was driven around underneath the bridge.

Figure 4-3 St. Croix Crossing Bridge Flight Plans

4.1.3 Deliverables

A 3D Model with a High-Resolution Photograph Log was processed from the flights. All photographs taken during the Mapping Missions were processed in the Pix4D software. The software processed
photographs to form a 3D point cloud for digital viewing. The point cloud was then processed by the same software to generate a 3D mesh of the bridge.

An inspector was able to use the Pix4D program to navigate the 3D model and select areas of interest. The software provided the inspector with all still images containing the selected area of interest which can then be viewed in high resolution. Additionally, the inspector could place annotations and measurements areas into the model for design plans, further detailed inspection, or construction documents.

Figure 4-4 St. Croix Crossing Bridge 3D Photolog

4.1.4 Findings

4.1.4.1 Opportunities

The execution of the Mapping and Photogrammetry Mission was a success and provided great insight into the potential of UAS as a tool during in-depth inspections. The set-up, flight, and data generation went as planned. The Falcon 8+ UAS performed well and demonstrated to be a cost effective and efficient way to inspect areas of a bridge that were difficult to access. The use of UAS would reduce the high cost of traditional access equipment, produce an accurate account of defect quantities at the time of inspection, and the data gathered was substantial enough to create the planned deliverables. The deliverables demonstrated that significant improvements can be made in inspection documentation utilizing photogrammetry techniques. Defect measurement was more accurate and easier to share with the bridge owner.

4.1.4.2 Limitations

While the Falcon 8+ has a high-resolution camera onboard, some photos were too blurry to process. This issue was due to UAS movement and slow camera shutter speeds. The quality and settings of the camera on the UAS dictate how the pilot should fly a mission and the pilot needs an intimate understanding of the operating environment and UAS settings. If the UAS has a lower quality camera, it will need to be flown closer to the bridge and require more photos to produce the same model. Flight time is an issue that must be factored in and planned for. For the Falcon 8+, there are two batteries that will allow a maximum flight time of roughly eighteen minutes. After the images have been taken and are put into a modeling software, the number of photos and the processing power of the computer drives the time it takes to process the bridge. After the initial process is completed, the model has the potential of needing manual editing to produce an accurate reality model.

4.1.4.3 Conclusion

The use of UAS for the bridge safety inspection of the St. Croix Bridge was invaluable to creating a higher quality deliverable, saving time and resources, and creating a safer working environment. Although not all elements or components can or should be inspected with the drone, the use of a UAS under preplanned missions could replace the need for certain aerial access platforms, rope access requirements, or other hazardous or high-risk operations.

4.2 I-394 @ DUNWOODY ON AND OFF RAMPS

This field inspection implementation consisted of UAS imaging and terrestrial radio-controlled imaging in the routine inspection, element condition assessment, and defect mapping of several interior boxes and exterior elements at bridge number 27831C and 27831D, I 394 over Dunwoody Blvd. in Minneapolis, Minnesota. The bridges were inspected, and a study was conducted of the RC/UAS Inspection for the Minnesota Department of Transportation (MnDOT) in June-November 2019 as part of Phase IV.

Bridge 27831C is a westbound I-394 on ramp from I-94 near downtown Minneapolis. This structure is comprised of five prestressed concrete beam spans and four concrete box girder spans supported by reinforced concrete caps with reinforced concrete columns.

Bridge 27831D is an eastbound I-394 off ramp to I-94 near downtown Minneapolis. The structure is comprised of five prestressed concrete beam spans and four concrete box girder spans supported by reinforced concrete caps with reinforced concrete columns.

4.2.1 Mission Scope

A mapping mission using the Parrot Anafi was identified to explore the potential of UAS photography to map concrete deck wearing surface defects. Primary goals of the missions included:

- Gather information in the form of photographs in a quick, efficient process that could later be used to map the deck wearing surface deficiencies
- Create a post-inspection tool to aid in repair plans, quantity estimation and historical documentation
- Eliminate the need for lane closures
- Explore the effectiveness of thermal imaging

Most of the Dunwoody bridge's 'On and Off' ramps were selected for imaging. The Parrot Anafi was flown using manual flight missions parallel to the ramp on an offset of approximately 30 feet from the outside railing with an elevation of the same distance above ground level. These parallel runs were done only on one side of each ramp without being directly over any traffic.

A high definition video mission was also conducted of limited access areas using the collision tolerant Elios UAS. Primary goals of this mission included:

- Determine the quality and applicability of using a Collision-Tolerant UAS to capture images
- Assess the condition of bridge pier cap topsides, end diaphragms and bearing elements which typically are difficult and costly to access and not easily viewed during a routine inspection
- Test the UASs' flight quality in open-air environments

The mission consisted of several interactive flights using only pilot controls. The use of the Elios UAS focused on these hard to access locations. An inspector then reviewed the video footage for defects and findings.

A two-person crew, consisting of a professional engineer-pilot and a field engineer conducted the UAS inspection. The pilot was certified as a FAA Remote Pilot. During the inspection the pilot worked with a mobile controller and the other crew member maintained a line-of-sight with the UAS. Flights that were conducted under the bridge deck and in the box girders hindered the GPS connection, meaning the flight was conducted in interactive GPS denied mode. The bridge was located in Class G Airspace therefore, no FAA waiver or additional authorization was necessary.

Several additional missions using terrestrial cameras mounted on a Remote Control (RC) platform were identified for this bridge to explore the potential of terrestrial photography to map concrete box girder interior defects. The target goal of the mission was to explore the difference in quality between UASs and terrestrial photography in confined spaces. The imaging of all boxes for bridge numbers 27831C and 27831D were selected for imaging using terrestrial means and cell DE1 from Bridge 27831C was selected for UAS means. The Flyability Elios was selected for the UAS method. The small confined space had limited effectiveness using the UAS due to the high dust levels. The terrestrial method utilized four GoPro Hero 7 HighResolution Cameras mounted in a cluster on the RC device and orientated in different directions (up, down, left, and right). Images were taken simultaneously from all cameras at calibrated distances from the RC device. The cameras were equipped with a 12 Megapixel still camera and a fisheye lens. During the inspection, the driver worked with a mobile controller while the other crew members monitored hazards and maintained communication in the confined space for the occupant(s). The entirety of terrestrial imaging was

Figure 4-5 RC Imaging Platform with GoPro Camera Cluster conducted inside the box girder spans. The number of images ranged from 100-350 per box depending on the size of the individual cells.

The use of UASs provided adequate visuals of areas with limited access such as the elements above the pier caps. This eliminated the need to utilize expensive access equipment during the routine inspection. The videos were then analyzed with Flyability Inspector software to highlight any points of interests in the video and provide heading orientation and altitude relative to launch location. The image below highlights the Flyability Inspector program:

Figure 4-6 Flyability Inspector Screenshot.

A second use of UASs provided inspectors the ability to produce an othromosaic map of the deck with the Pix4D program. These models were uploaded to the cloud and the inspector placed annotations and measurements on any deficiencies found in the model. If there was a specific area of interest, the inspector could click the area, and the software would provide all the still images affiliated with its annotations showing the original pictures of the area of interest. Refer to Figure 4-7 and Figure 4-8 for an example of a deck with inspection notes and annotations.

Figure 4-7 Bridge 27831A Deck with Measurements in Pix4D Cloud

A

Figure 4-8 27831A Deck using the Inspector Mode in Pix4D Cloud

Additional models were created in Pix4D software for all interior boxes from the terrestrial imaging missions. These models provided a visually representation the current condition of the boxes within a virtual interactive environment, allowing for future comparisons. The models could be simplified further into 2D orthomosaics where deficiencies could easily be traced electronically, shown below. Some limitations included time to figure out a proper process for correct imaging and increased processing time required to refine or rectify the final product for some models.

Figure 4-9 Unfolded Views of a Box Girder Model, Left Being Untraced and the Right Traced

Figure 4-10 3D Model of a Cell

4.2.3.1 Advantages

The execution of the Mapping and UAS Mission was successful and provided great insight into the potential for UAS as a tool during routine inspections. The set-up, flight, and data generation went as planned and was substantial enough to create the planned deliverables. The deliverables demonstrated that significant improvements were made to the inspection documentation. Defect measurements were more accurate, simple to gather, and easier to share with the bridge owner.

The Elios collision tolerant drone performed well and demonstrated a cost effective and efficient way to inspect bearings and top of pier caps. These elements were typically not accessed during routine inspections before due to the high cost of access equipment, and the ability to get access equipment into these locations without expensive lane closures.

Photogrammetry methods using terrestrial devices proved to be beneficial for field work as it eliminated much of the necessary field documentation which translated to less time for engineers to spend inside confined space. This method also helped for post-inspection evaluation giving the inspector an effective way to accurately translate defects and measurements for future monitoring.

4.2.3.2 Limitations

While the collision tolerant drone video is not as reliable as a hands-on inspection, most of the components near the top of the pier are not being accessed at close range due to the high cost of inspection equipment and the ability to get access equipment into place easily. The collision tolerant drone also had limited effectiveness in the confined spaces of the boxes because of the high amount of dust that has accumulated there in combination with very tight vertical clearances.

The thermal implementation of the deck was difficult to showcase any potential areas of delaminations. Further site investigation would be needed to confirm any areas that were of concern for confidence in accurate information. Refer to the image below for a snapshot of the deck under the thermal camera. Additional exploration of the thermal capabilities and settings would need to be explored to implement this technology on a large scale with engineering confidence.

Figure 4-11 Thermal Snapshot of a Dunwoody Bridge Deck
The terrestrial method inside the box girders was not able to navigate through diaphragms without aid from the driver. The lack of light also proved to be troublesome which required lighting from 2400 Lumen portable lights lengthening set-up time for each cell. Since the box girder bridges were split into 48 cells per bridge, set-up times had a large impact in labor hours.

4.3 BLATNIK BRIDGE 9030 INSPECTION

This implementation consisted of unmanned aircraft system (UAS) inspection and element condition assessment of the Blatnik Bridge in conjunction with the routine and fracture critical inspection performed by Collins Engineers for WisDOT and MnDOT. The primary purpose was to utilize UASs to provide an inspection 3D model of the bridge with images georeferenced for documentation of the bridge conditions.

The Blatnik Bridge crosses Saint Louis Bay between Duluth, Minnesota and Superior, Wisconsin. The bridge is a steel through arch truss bridge and was originally constructed in 1961 and widened in 1992.

Figure 4-12 Overall Photo of the Blatnik Bridge

Figure 4-13 Preplanned Flights of the Blatnik Bridge

Collins Engineers performed the routine and fracture critical inspection of the Blatnik Bridge as part of the FHWA bridge safety inspection requirements. As part of this project, the team utilized UAS to collect bridge inspection data. The UAS was not intended to replace the arm's length inspection but to supplement the inspection and communicate inspection results.

The UAS inspection was conducted using the Intel Falcon 8+ equipped with a Sony Alpha 7R camera. The missions were preplanned using Intel's Mission Control software. During the inspection, the pilot worked with a mobile controller and the other crew member-maintained line-of-sight with the UAS. In order to achieve a high-resolution 3D model of the bridge, flights were conducted manually using a preplanned flight to allow for a more accurate overlap of each photo of approximately 85 percent. Flights were performed from the corners underneath the bridge. AeroPoint automatic ground control targets were placed on the bridge deck and on the piers near the waterline to geolocate the deliverables. The bottom of the bridge was covered by using a boat to drive patterns under the bridge while images were triggered manually. The entire data collection effort took less than 8 hours with a crew comprised of two bridge engineers.

Figure 4-14 Aerial View of the Intel Drone Collecting Data

Figure 4-15 Intel Drone Collecting Data

4.3.2 Deliverables

A 3D Model was generated in Pix4D software of the truss spans of the bridge. The models were generated locally on a high-end desktop computer and uploaded to the cloud using Pix4D's cloud platform. The models provided a way to communicate visually the current condition with a virtual interactive environment and provide means for future comparisons. The virtual inspection tool from Pix4D allowed the user to click on an area of interest and see the corresponding high-definition images of that area sorted by shortest distance to the object. Inspection notes can be added which are geolocated and linked to a specific image. The model was also used to annotate measurements of the bridge in addition to bridge labels and truss panel points.

Figure 4-16 Pix4D Cloud Data for the Blatnik Bridge

4.3.3 Findings

4.3.3.1 Advantages

The execution of the modeling with the Intel Falcon 8+ in combination with Pix4D software was successful and provided a very useful way to document the conditions of the bridge. The set-up, flight, and data generation went as planned and was substantial enough to create the planned deliverables. The deliverables demonstrated that significant improvements were made to the inspection documentation. Defect measurement was accurate, simple to gather, and easier to share with the bridge owner.

The preplanned missions from the Intel Software can be used in the future to collect the same data from the same locations and will offer a direct comparison of any deterioration between inspection cycles.

4.3.3.2 Limitations

Minor limitations were presented when acquiring the data in the field. One limitation was that a large bridge can be difficult to model. Some portions of the bridge model were not initially complete and manual tie points were needed to accurately depict the bridge. QR codes should be used on future inspections to eliminate the need to manually add tie points to save time in processing. These codes could potentially be installed on the bridge for future inspections.

4.4 SHV BRIDGE

This UAS implementation consists as a supplement to a special hauling vehicle (SHV) condition, load rating assessments, and defect mapping of culverts in Minnesota. The primary purpose during the inspection was to document and record actual conditions efficiently, rather than the typical, time consuming technique of documenting via paper and pencil. A variety of bridges included in this UAS field work were selected across the state of Minnesota. Structures were culverts consisting of a flexible corrugated metal pipe arch on top of short masonry walls and timber box culverts.

A two-person crew, consisting of a professional engineer-pilot and a field engineer, conducted the UAS inspection. The pilot was certified as a FAA Remote Pilot. The inspection was conducted using a Parrot Anafi Thermal UAS. During the inspection, the pilot worked with a mobile controller and the other crew members maintained line-of-sight with the UAS. The bridges were located in class G airspace therefore, no FAA waiver or additional authorization was necessary. In addition to the UAS, terrestrial imagery was used to capture photographs inside the confined corridor of the interior of the culverts. The camera utilized was an Olympus Tough TG-6 Waterproof Digital Camera.

4.4.1 Mission Scope

A mission using the Parrot Anafi was identified to implement UAS photography to image an isolated area of the timber culvert. The target goal of the mission was to gather information in the form of photographs in a quick, efficient process. These could later be used to document and measure existing deficiencies and have a postinspection tool to aid in repair plans, quantity estimation and historical documentation. This mission eliminated the need for a full-scale model as it was only an isolated area. The inlet area of the culture was selected for imaging due to the washout and erosion present there. The Parrot Anafi

Figure 4-17 Timber Culvert Imaging Flight Path was flown using manual flight in a half circle around the inlet on two different altitudes and distance from the culvert. The flight was conducted without being directly over any traffic.

An additional mission was performed using a terrestrial camera to explore the opportunity to model and document deflection of metal pipe culverts. The target goal of the mission was to explore the quality in terrestrial photography in a confined corridor. The imaging of the corrugated metal pipe arch bridge, number 88883 was selected for imaging using terrestrial means. The method used a point and shoot camera that represented most field photography devices used during general inspections. To begin, images were taken of both inlet and outlet with adequate overlap of the subject. Then photos were strategically spaced out from the same angle as the inspector walked through the barrel. The process of walking through while taking pictures was repeated several times, back and forth with the camera at different angles. The number of images totaled 257.

4.4.2 Deliverables

A 3D Model was processed in Pix4D software for the SHV bridge inspections presented above. The models created a virtual interactive environment with the ability to visually inspect current conditions, and allow for future comparisons, measurements, and documentation of condition assessment and load rating. The models also could be broken down into 2D orthomosaics where deficiencies could be easily traced and measured electronically.

The use of UASs provided adequate visuals for areas of

Figure 4-18 Metal Pipe Arch Interior Model Imaging Path concern efficiently with the ability for the inspector to obtain multiple photos that would reflect the best view of the deficiency as possible. The washout of Bridge 92460 was modeled at the inlet side of the culvert with the Anafi UAS. This gave insight on being more efficient with this tool by only implementing modeling on specific areas of concern. The image below represents the overall elevation view of the timber structure.

Figure 4-19 3D Model Snapshot View with Closeups of Areas of Concern
A 3D model was made of the metal pipe arch to document and measure the amount of deformation and bulging at the center of the culvert length. This Is typically a difficult task top perform since the ends of a culvert are at different elevations and the deformation has not baseline to be relative to. Using this 3D model an extremely accurate measurement of the change in curvature and any flattening could be assessed and used in the load rating of the structure.

4.5 TETTEGOUCHE BRIDGE

This case study consists of the results of an UAS bridge modeling and inspection of the Tettegouche State Park Bridge. This bridge is 383 feet long and includes a 140 -foot steel deck truss main span over the Baptism River and 4 steel girder approach spans. The UAS inspection was performed in conjunction with a fracture critical inspection performed by MnDOT.

Figure 4-20 Tettegouche Bridge

4.5.1 UAS Operation

A two-person crew, consisting of a professional engineer-pilot and a field engineer, conducted the UAS inspection. The pilot was certified as a FAA Remote Pilot. The inspection was conducted using a registered UAS and AeroPoint ground control targets. The UAS was an Intel Falcon 8+ equipped with a Sony Alpha 7R camera and the majority of flight missions were preplanned using Intel Mission Control software.

During the inspection, the pilot flew the UAS and had direct line of sight. The photos were taken in four sections: Fascia, Deck, and Underside to achieve a high-resolution 3D model of the bridge. Deck and fascia sections had a preplanned mission to allow for an accurate overlap of each photo of approximately 85 percent. Underside photos were taken using manual flight control. 1,229 photos were taken in a systematic overlapping manner to ensure total photo coverage of the bridge.

4.5.2 Mission Scope

A UAS was utilized to collect inspection information and to create a 3D reality model of the bridge to aid in organizing inspection results. The bridge was processed in both Pix4D and Context Capture to compare the quality of the models. The bridge was also uploaded to Pix4D cloud platform and bridge elements and defects were recorded directly on the model.

Figure 4-21 Tettegouche Bridge Flight Plan

4.5.3 Deliverables

A 3D Model with a High-Resolution Photograph Log was processed from the flights. All photographs taken during the Mapping Missions were processed in Pix4D software. The software processed the photographs to form a 3D point cloud for digital viewing. The point cloud was then processed by the same software to generate a 3D mesh of the bridge. The bridge was also processed in Context Capture and the resulting model was cleaner with less noise and modeling artifacts.

An inspector was able to use the Pix4D program to navigate the 3D model and select areas of interest. The software provides the inspector with still images containing the selected area of interest which can then be viewed in high resolution. Additionally, the inspector can place annotations or measurements in the model for repair plans and further detailed inspection.

Figure 4-22 Tettegouche Bridge Pix4D Cloud Model Virtual Inspector Tool

Figure 4-23 Tettegouche Bridge Pix4D Cloud Model with Inspection Notes

Figure 4-24 Tettegouche Bridge Modeled in Context Capture

Figure 4-25 Tettegouche Bridge Context Capture Model Close Up View

4.6 STONE ARCH BRIDGE INSPECTION AND REHABILITATION PROJECT

This implementation consisted of unmanned aircraft system (UAS) inspection and element condition assessment of the Stone Arch Bridge in conjunction with a rehabilitation project currently underway by Collins Engineers and LHB for MnDOT. The primary purpose was to utilize UASs to provide an 3D inspection model with georeferenced images to document bridge conditions and for use as data and a deliverable for the rehabilitation project.

The Stone Arch Bridge is located in downtown Minneapolis and crosses the Mississippi River. The bridge is a 2100 -foot-long, 22 span masonry stone arch bridge built by James J. Hill for his Great Northern Railroad in 1883. The bridge served rail traffic until the early 1990's when it was converted to a pedestrian bridge. The Stone Arch Bridge is a historically significant bridge and is a landmark for the City of Minneapolis and the State of Minnesota.

Figure 4-26 Overall Photo of the Stone Arch Bridge

Figure 4-27 Preplanned Flights of the Stone Arch Bridge

4.6.1 Mission Scope

Collins Engineers performed the inspection of the Stone Arch Bridge as part of a rehabilitation project for the Minnesota Department of Transportation. The project included a detailed inspection of the bridge in anticipation of masonry repairs. Detailed information on the condition of the masonry was required to develop repair plans and to calculate repair quantities. As part of this project, the team utilized UAS to collect bridge data. The UAS did not replace the arm's length inspection but supplemented the inspection and provided an improved way to communicate the inspection results.

The UAS data collection process was split into two separate efforts. The first effort collected data for the entire bridge and the second effort recollected the same data for the river spans to take advantage of a river drawdown that exposed areas of the bridge that are normally underwater.

The UAS inspection was conducted using the Intel Falcon 8+ equipped with a Sony RX1R camera. The missions were preplanned using Intel's Mission Control software. During the inspection, the pilot operated the drone with the mobile cockpit controller and the other crew members maintained line-ofsight with the UAS. In order to achieve a high-resolution 3D model of the bridge, most flights were conducted autonomously using pre-planned flights to allow for a more accurate overlap of each photo of approximately 85 percent. Flights were performed from areas near the bottom of the bridge with some flight performed from the bridge deck. When flights were flown from the bridge deck additional team members were present to direct pedestrians for safety. AeroPoint automatic ground control targets were placed on the bridge deck and on the ground near the bottom of the bridge to geolocate the deliverables. The images of the underside of the arches was collected by using a boat to drive
patterns under the bridge while images were triggered manually. The entire data collection effort took less than 4 days with a crew comprised of two to three bridge engineers. A video of the drone in flight collecting data can be viewed here:

Figure 4-28 Video of Falcon 8+ Performing Inspection

Figure 4-29 Aerial View of the Intel Drone Collecting Data

Figure 4-30 Intel Drone Collecting Data

4.6.2 UAS Implementation Workflow

This unique project required a workflow to incorporate the benefits of reality modeling and hands on inspection. The project workflow as it relates to UAS implementation is as follows:

1. UAS Field Data Capture
2. Digital Twin Creation
3. Field Inspection Utilizing Reality Models
4. Rehabilitation Design and Plans
5. Construction

Before any inspection was performed, the bridge was flown in its entirety and reality models were created of sections of the bridge in anticipation of a hands-on field inspection. The models were created with Context Capture and were uploaded to Projectwise for cloud sharing and editing in the field. Bridge engineers used iPad tablet computers with an internet connection to view the models and input inspection notes directly on the model during the hands on inspection. This method, the reality model and digital access while in the field was found to be advantageous. It allowed for greater accuracy than traditional paper and pencil note taking, and efficiencies were gained from not having to locate each stone or determining which stone on the drawing the inspector was looking at as this information was easily and accurately accessible. With all notes going directly onto the model and there was no
confusion about what the correct stone is. Ideally, inspection information could be prepopulated in the office and verified in the field but, the project schedule did not allow that in this case.

Figure 4-31 Reality Model of Spans 17-22

Figure 4-32 Reality Model of Spans 17-22 With Inspection Notes
Another advantage of creating and tying inspection notes to the reality model is that all of the data is available as a .json file and each note is geospatially located. The notes can be easily transferred to the construction drawings without having to manually copy notes into CAD, which is tedious and a timely process.

4.6.3.1 3D Reality Models and 2D Orthomosaics

3D Reality Models and 2D orthomosaics were generated in ContextCapture software as discussed previously. The models were generated locally on high-end desktop computers and uploaded to Projectwise. The models provided a way to communicate visually the current condition with a virtual interactive environment and provide means for future comparisons. The reality models are being used locally in Microstation to develop repair plans and are also available on Projectwise for all team member to view.

The following figure is a model of spans 1-12 that was created from the data collected during the river drawdown. This model represents a unique opportunity to capture data and display what the bridge looks like for the portions of the bridge that is normally underwater. The river basin is drawn down approximately every 12 years so, this data will be valuable for many years to come.

Figure 4-33 3D Reality Model of Stone Arch Bridge During River Drawdown

Figure 4-34 Reality Model Zoomed in to Pier During River Drawdown

Figure 4-35 2D Orthomosaic Overall

Figure 4-36 2D Orthomosaic Medium Close Up

Figure 4-37 2D Orthomosaic Close Up

4.6.3.2 Artificial Intelligence

The models of the Stone Arch Bridge were analyzed using artificial intelligence and machine learning to find cracks on the masonry. ContextCapture Insights software was used to find and delineate the cracks automatically. While the algorithms are not perfect, they were impressive and this technology gives engineers a quick way to find and quantify cracking which is difficult to complete in the field using hand tools. Cracks are typically very irregular in their nature which makes it challenging to measure and document accurately.

Figure 4-38 ContextCapture Insights AI Crack Detection

4.6.3.3 Holographic Virtual Inspections

Another deliverable that we created with Bentley Inc. is the ability to view and annotate the bridge model using the Microsoft Hololens 2. This unique method allows team members to perform virtual inspections of the bridge from their office.

Figure 4-39 Virtual Inspection of Bridge Using Microsoft Hololens 2

Figure 4-40 Hololens Inspection Defect Notation

More information on the holographic virtual inspection process can be found here:

Figure 4-41 Hologram Virtual Inspection Process

4.6.4.1 Advantages

The execution of the modeling with the Intel Falcon 8+ in combination with ContextCapture Software was successful and provided a very useful way to document and communicate the conditions of the bridge. The set-up, flight, and data generation went as planned and was substantial enough to create the planned deliverables. The deliverables demonstrated that significant improvements were made to the inspection documentation workflow. Defect measurement was accurate, simple to gather, and easier to share with the project team members.

The preplanned missions from the Intel Software can be used in the future to collect the same data from the same locations and will offer a direct comparison of any deterioration between inspection cycles.

4.6.4.2 Limitations

Minor limitations were presented when acquiring the data in the field. One limitation was that a large bridge can be difficult to model. The bridge is a very popular and busy pedestrian bridge so, our field teams had to be very careful when flying the drone and worked earlier in the day when there were fewer pedestrians. Another minor limitation was working with the large volume of data can be computer and network intensive but utilizing high-end processing computers allowed for reasonable workflows.

4.6.5 Conclusion

4.6.5.1 Advantages

The execution of the 3D modeling mission was successful and provided some insight into the potential for UAS as a tool during load ratings for measurements and deficiency mapping. The set-up, flight, and data generation went as planned and was substantial enough to create the planned deliverables. The deliverable demonstrated improvements which can be made to the inspection documentation. Defects could be measured, simple to gather, and easier to share with the bridge owner. This could be a powerful tool to be more transparent from the field to the office in any areas the inspector feels may influence the performance of structures.

Photogrammetry methods using terrestrial devices proved to be beneficial for field work as it provided the owner a more comprehensive outlook of the structures. This method also helped for post-inspection evaluation giving the inspector an effective way to accurately translate defects and measurements for future monitoring.

4.6.5.2 Limitations

The value of the models related to load ratings included in this report seemed to be limited to the documentation of defects and global measurements. Taking the photos and processing them did add extra time to perform and small critical measurements such as steel thickness, member dimensions, and wearing surface thickness still should be measured by hand in the field.

CHAPTER 5: SAFETY AND OPERATION MANUAL

5.1 OVERVIEW

An Unmanned Aircraft Systems (UAS) Safety and Operation Manual was developed as part of this project. The manual can be found in Appendix A. The intent of the manual is to provide a risk-based approach to deciding when to take advantage UAS for bridge inspections. Also included are best practices for when UAS is used to help minimize the risk of incidents which could cause damage to the drone, property, or injuries. The manual is based on five years of drone use within MnDOT and while risks cannot be eliminated, the application of the best practices will minimize these risks significantly.

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS

6.1 PROGRAM APPLICATION

Unmanned Aircraft Systems have proven to be a low cost and low risk way to supplement bridge inspection efforts in Minnesota. Technology from both hardware and software continue to evolve making it more accessible to bridge inspectors and making the deliverables more beneficial and accessible.

6.2 INITIAL IMPLEMENTATION

As part of this project, UAS was applied to many bridge inspections using different applications. The bridges ranged from small simple structures to major signature river crossing bridges. The data collected was integrated into the inspection reports mostly by including links in the report to cloudbased, web sharing platforms.

6.3 SUSTAINED IMPLEMENTATION

MnDOT is has recently purshased a fleet of drones in addition to the Flyability Elios that is already owned by MnDOT Metro District. The purchase and use of these new drones will exponentially increase the implementation of UAS for bridge inspections within MnDOT. This report and the Safety and Operation Manual Bridge UAS Operations Manual should provide a framework for a successful implementation. This implementation will benefit MnDOT by lowering inspection costs, increasing safety for bridge inspectors and the traveling public and provide an additional access tool in tandem with the use of snoopers and rope access. Perhaps even more significant, the utilization of UASs and reality models provides not only an increased amount of data but also, an improved accuracy of the data. These enhancements will allow engineers to make data driven decisions to better manage these assets throughout their lifecycle.

REFERENCES

Federal Highway Administration, (2004) National Bridge Inspection Standards, 23 CFR 650, FHWA, Washington, DC.
U.S. Department of Transportation (2012), Bridge Inspector's Reference Manual, Federal Highway Administration, Washington, DC.

Minnesota Department of Transportation (2020), Bridge and Structure Inspection Program Manual, MnDOT Office of Bridges and Structures, Oakdale, MN

Federal Aviation Administration (2020). Internet. Unmanned Aircraft Systems, Retrieved from https://www.faa.gov/uas/.

UNMANNED AIRCRAFT SYSTEMS (UAS) SAFETY AND OPERATION MANUAL

STATE OF MINNESOTA

Bridge and Structure Inspection Program Manual

Chapter U

UAS SAFETY AND OPERATIONS MANUAL

TABLE OF CONTENTS

U. 1 OVERVIEW 1
U.1.1 UAS USE PHILOSOPHY 1
U.1.1.1 Safety Improvements 1
U.1.1.2 Reduced Costs 1
U.1.1.3 Improve Data/Deliverables 1
U. 2 ABBREVIATIONS 2
U. 3 UAS OPERATIONS 2
U.3.1 RULES AND REGULATIONS 2
U.3.1.1 Federal Aviation Administration 2
U.3.1.2 MnDOT Requirements 3
U.3.1.3 Qualifications 4
U.3.3 EQUIPMENT 4
U.3.3.1 Battery Safety 5
U.3.3.2 Drone Airframe and Propellers 5
U.3.5 PRIVACY 6
U.3.6 ROLES AND RESPONSIBLITIES 6
U.3.6.1 Inspection Team 6
U.3.7 INSPECTION PLANNING 6
U.3.8 FIELD OPERATIONS 7
U.3.8.1 Signs 8
U.3.8.3 PPE 9
U.3.8.6 Risks and Mitigations 10
U.3.9 RESULTS AND DELIVERABLES 13
LIST OF FIGURES
Figure 1-1 View of Flyability Elios under a bridge 5
Figure 1-2 Screenshot of flight planning software demonstrating a flight plan for a bridge. 7
Figure 1-3 Drone inspection ahead sign at the Stone Arch Bridge in Minneapolis. 9
Figure 1-4 UAS Inspection staff wearing PPE at the St. Croix Bridge 10
Figure 1-5 Risk chart showing the likelihood of failure 11
Figure 1-6 Map showing inspection plan notes for the St. Croix Bridge Inspection. 13
Figure 1-7 A close-up view of a hard to reach area at the top the pier on the St. Croix Bridge 14
Figure 1-8 Bridge Deck Surveys 14
Figure 1-9 Routine Inspection 3D Models 15
Figure 1-10 Inspection Results Annotation 15
Figure 1-11 Individual Bridge Element Modeling 16
Figure 1-12 Confined Space Inspection 16

U. 1 OVERVIEW

An Unmanned Aircraft System (UAS) is defined by the Federal Aviation Administration (FAA) as an aircraft operated without the possibility of direct human intervention from within the aircraft. Unmanned aircraft are commonly referred to as drones, and the names can be used interchangeably. The use of UASs to aid in bridge inspection should be considered as a tool for a qualified Team Leader when a hands-on inspection is not necessary or required. UASs are controlled either autonomously or with the use of a remote control by a pilot from the ground. Current technologies for commercial use include both fixed wing and rotor aircraft, although for bridge safety inspections rotary aircraft are more suitable. A wide range of imaging technologies including still, video, and infrared sensors can be utilized. On-site or in-office image processing can be used to produce inspection deliverables. UASs themselves cannot perform inspections independently but can be used as a tool for bridge inspectors to view and assess bridge element conditions in accordance with the National Bridge Inspection Standards.

This chapter is not intended to be a complete training manual on the use of UAS for bridge inspection but is intended to establish best practices and guidelines for a risk based approach to improve inspection outcomes. The owner or engineer may have to implement additional requirements that exceed those outlined in this chapter based on specific site conditions and engineering judgment or when presented with unusual circumstances.

U.1.1 UAS USE PHILOSOPHY

Drones have proven to be a useful tool to provide alternative methods of access and to improve the quality of data for a bridge inspection. Bridge inspectors should consider incorporating the use of drones into a bridge inspection with the following guidance:

U.1.1.1 Safety Improvements

Drones should be considered when safety improvements can be realized for inspectors and/or the traveling public. Risks can be reduced by eliminating or reducing the need for:

- Personnel Working Near Traffic
- Traffic Control
- Personnel Working from Heights

Drones themselves can introduce their own risks which should be weighed against safety improvements. As an example the risk and consequence of a collision with a pedestrian should be weighed against the risk and consequence of a traffic accident resulting from a lane closure.

U.1.1.2 Reduced Costs

Drone use for bridge inspection has shown cost savings when traffic control and snooper use can be reduced. These cost savings should be considered especially when the quality of the inspection remains the same or improves.

U.1.1.3 Improve Data/Deliverables

Drones can improve the quality and quantity of data collected during an inspection and their use should be considered when these improvements can be realized.

U. 2 ABBREVIATIONS

```
AMSL - Above Mean Sea Level
AGL - Above Ground Level
ATO - Above Take Off
ATC - Air Traffic Control
BVLOS - Beyond Visual Line of Sight
COA - Certificate of Waiver or Authorization
CFR - Code of Federal Regulations
PIC - Pilot in Command
UAS - Unmanned Aircraft System
sUAS - Small Unmanned Aircraft System
FPV - First Person View
GPS - Global Positioning System
NAS - National Airspace System
NOTAM - Notice to Airmen
TFR - Temporary Flight Restrictions
FAA - Federal Aviation Administration
VO - Visual Observer
LAANC - Low Altitude Authorization and Notification Capability
```


U. 3 UAS OPERATIONS

The following sections describe the recommended operating procedures and considerations when using UAS for bridge inspections.

U.3.1 RULES AND REGULATIONS

U.3.1.1 Federal Aviation Administration

The Federal Aviation Administration (FAA) of the United States is a national authority with powers to regulate all aspects of civil aviation. These include the use of UAS for commercial purposes. All bridge inspections that utilize UAS are required to follow the FAA's UAS requirements.

UAS operations are allowed with a Certificate of Waiver or Authorization (COA) or under the FAA's Part 107. Part 107 applies to drones weighing less than 55 pounds, operated within the visual line of sight of the remote pilot in command, and flown during daylight hours. The remote
pilot in command must have a Remote Pilot Certification from the FAA which can be obtained by passing an aeronautical knowledge test. With direct supervision from a licensed remote pilot, anyone over the age of 16 can legally operate a drone for commercial purposes. Each UAS must be registered with the FAA. Operations in Class G airspace are allowed without air traffic control permission (ATC), however operations in Class B, C, D and E airspace need air traffic control approval. A basic summary of the requirements is included below.

Pilot Requirements	Must have Remote Pilot Airman Certificate Must be 16 years old Must pass TSA vetting
Aircraft Requirements	Must be less than 55 lbs. Must be registered if over 0.55 lbs. (online) Must undergo pre-flight check to ensure UAS is in condition for safe operation
Location Requirements	Class G airspace can be flown under part 107 without an FAA waiver. Classes B, C, D, and E airspace can be flown with an FAA waiver
Operating Rules	Must keep the aircraft in sight (visual line-of-sight) Must fly under 400 feet
Must fly during the day	
Must fly at or below 100 mph	
Must yield right of way to manned aircraft	
Must NOT fly over people	
Must NOT fly from a moving vehicle	

More information on Part 107 can be found on the FAA website. https://www.faa.gov/uas/getting started/fly for work business/

U.3.1.2 MnDOT Requirements

The offices of Aeronautics and Chief Counsel provide assistance to districts and offices that are pursuing or contracting for UAS services. The Aeronautics Office has an official policy for the
use of UAS on MnDOT projects. The policy and procedures is detailed at the following website: http://www.dot.state.mn.us/policy/operations/op006.html

For UAS operation, MnDOT employees must:

- Obtain a blanket public Certificate of Waiver or Authorization (COA) that permits flights in Class G airspace at or below 400 feet, or
- Perform operations that adhere to 14 CFR Part 107 ("Part 107" operations).
- Create a safety and operations plan that addresses all aspects of the intended mission.

When contracting for UAS services, the contractor must adhere to the requirements of Part 107. MnDOT will review Section 333 Exemption and COA of third parties, and these contractors will be required to license the vehicle and obtain a commercial operator's license from the MnDOT Office of Aeronautics as required by Minnesota Statutes §360.521-Minnesota Statutes §360.675.

U.3.1.3 Qualifications

FAA and MnDOT rules and regulations should be considered a minimum. The pilot in command should be experienced and confident in each application and in each environment in which it is used. The pilot and team members should be well versed in the particular drone models operating procedures and limitations. Each mission should be evaluated for risks and carefully planned to mitigate for those risks.

U.3.3 EQUIPMENT

UAS equipment is available that is specific to inspections with features that are important when performing bridge inspections. It is recommended to employ a UAS specifically designed for the particular mission. Consideration should be given to the robustness and reliability of the drone to ensure safety and quality results. While technologies and capabilities differ, the most common inspection UASs share these general features:

- Powered by rechargeable batteries
- Controlled either autonomously or with a remote-control device
- Contain 4 to 8 rotors
- Ability to use GPS to track location
- Contain fail safes such as return to home technology
- Includes a camera with both video and/or still image capabilities
- Thermal sensors
- Proximity sensors and awareness
- Ability to preprogram autonomous missions
- Ability to fly under bridge decks in a GPS denied environment and within confined spaces.
- Ability to look up to view the underside of a bridge deck

U.3.3.1 Battery Safety

Lithium Ion Batteries require special care to ensure they perform reliably. The following guidelines will help ensure batteries perform as designed. Specific care tips can also be found in each drones manual.

- Never fully discharge a battery.
- Do not store batteries fully charged.
- Only charge batteries in areas free from flammable materials.
- Never charge batteries unattended.
- Never store batteries in extreme temperatures.
- Protect batteries from punctures or impact damage.

U.3.3.2 Drone Airframe and Propellers

Any UAS used should have a preflight inspection performed to ensure the equipment is operating properly. Special attention should be paid to critical parts including propellers and should be replaced according to manufacturer recommendations. Any discrepancies during flight should be logged and addressed.

Drones should be inspected for damage prior to mobilizing for and inspection and prior to each individual flight. A visual and tactile inspection of the drone propellers should be performed to identify damage. Propellers with any sign of damage or cracking should be replaced prior to use. Logs should be kept detailing when maintenance and repair activities have occurred.

Figure 1-1 View of Flyability Elios under a bridge

U.3.5 PRIVACY

Most bridge inspections are performed in areas where the public does not have a reasonable expectation of privacy. However, the privacy of the public should be respected and flying over private property should be avoided when possible.

U.3.6 ROLES AND RESPONSIBLITIES

U.3.6.1 Inspection Team

The UAS operator is required by the FAA to have a Remote Pilot Certification. In addition, the operator should be very familiar with the UAS and have studied the owner's manual and received training on the operation of the UAS before attempting to fly near a bridge. Similar to manned aircraft, the crew should not operate with a medical condition that could interfere with safety. Generally, the minimum size of a crew should be two people, one to operate the aircraft and one to act as a spotter. It is recommended that the operator also be a qualified bridge inspector and at a minimum, the bridge inspector should always be on site directing the inspection.

Bridge inspections that utilize UAS should not deviate from FHWA and MnDOT requirements for Bridge Inspection Qualifications. The team leader should remain in control of the inspection efforts and if possible, the PIC should be a qualified inspector.

- Pilot in Command (PIC) - This person holds a remote pilot certification and has the final authority for flight operations. The PIC is responsible for planning and safe operation of the UAS during the inspection. Ideally this person is also a qualified bridge inspector. The PIC should only communicate with the VO during flights and distractions should be minimized.
- Visual Observer (VO) - This person assists the PIC to help identify air traffic, obstacles, vehicles and pedestrians. The VO should be in direct communication of the PIC throughout each flight.
- Support - Additional field staff may be required to monitor pedestrians and the public or to provide additional VO support in congested areas.

U.3.7 INSPECTION PLANNING

Flights should carefully planned before mobilization in the field. Equipment necessary for the inspection should be listed and compiled. Autonomous flight plans should be prepared and any site-specific obstacles or challenges should be identified and addressed. Weather should be monitored and airspace restrictions should be checked. If airspace waivers are required they should be obtained from the FAA prior to mobilization. Temporary Flight Restrictions and Notices to Airmen should also be checked just prior to mobilizing for the inspection. Once mobilized in the field flight planning should be reviewed and adjusted based on site specific conditions.

Figure 1-2 Screenshot of flight planning software demonstrating a flight plan for a bridge.

Automated Bridge Flight Plan Example

A safety plan should be prepared that addresses site safety and the proper qualifications of personnel and proper use of the UAS. The safety plan should address the following:

- Purpose of the effort
- Field team personnel
- Site location
- Structure description
- Any site-specific hazards
- FAA airspace class and waiver status if required
- Any privacy concerns

All personnel should be equipped with full personal protective equipment including eye protection and hard hats. The operations area should be delineated with cones, signs, and markers. If operations include the possibility of drivers seeing the drone within close proximity.

U.3.8 FIELD OPERATIONS

The PIC has the ultimate authority over the flight operations and the responsibility to determine if flights can be safely perform considering weather and site conditions. Checklists should be
utilized to ensure safe flights. While each specific UAS will have its own specific checklist the following list includes general checklist items that should be included.

Flight Checklist

\square Remote Pilot Certificate
\square UAS registered
\square Updated firmware/apps
\square Airframe Inspected
\square Batteries charged
\square Weather conditions checked
NOTAMs/TFRs
Identify Site Hazards and Obstacles
Preflight Risk Assessment
Airspace authorization
Site plan/flight plan prepared
Part 107 Compliance
\square Verify GPS and Control Links
Verify home point set and return to home parameters verified
Scope/Deliverables Defined
PPE
Landing Area Delineated
\square Return to home location and procedures understood and set
\square Safety Briefing Performed
\square Crew Mobile Devices off or in Airplane Mode

U.3.8.1 Signs

Drone Inspection Ahead signage should be placed so drivers are not distracted by a UAS. An onsite safety briefing should be performed before work begins on the site each day

Figure 1-3 Drone inspection ahead sign at the Stone Arch Bridge in Minneapolis.

U.3.8.3 PPE

Personal Protective Equipment should include the following as needed based on site conditions:

Reflective Clothing or Vests
\square Safety Glasses
\square Cut Proof Gloves
\square Hearing Protection
\square Respirators or Masks
\square Skin Protection

Figure 1-4 UAS Inspection staff wearing PPE at the St. Croix Bridge.

U.3.8.6 Risks and Mitigations

UAS can be flown safely when risks are properly mitigated. Risk is managed by evaluating the likelihood of failure and the consequence of failure. An example would include hitting a manned aircraft during a bridge inspection would be a low likelihood of failure but a high consequence of failure. Alternatively hitting a tree with the drone would be a higher likelihood of failure but a low consequence of failure. We can manage risk by monitoring, managing, mitigating or re-
evaluating. The following chart can be used to assess risks. No operation is without any risk but as we increase the like

Figure 1-5 Risk chart showing the likelihood of failure

The following is a list of risks associated with flying drones for inspection and some mitigation strategies that can be employed to limit the risks.

Risk:	Collision with Manned Aircraft
Mitigations:	Redundant Control Systems
	Additional Visual Observer(s)
	Limit size and weight of UAS
	Limit ceiling of drone flights to lower altitude
	Utilize Pilots with Higher Experience Level
Risk:	Collision with Pedestrians or Vehicles
Mitigations:	Limit Size and Weight of UAS Increase Horizontal Distance from Public
	Redundant Battery Systems Clearly Delineate Landing Area Shut off Motors if Crash Imminent
	Preplanned Ditch Procedures and Locations

Risk: Collision with Structure Being Inspected
Mitigations: Use Collision Tolerant Drone or Propeller Guards
Utilize UAS Collision Avoidance Technology
Additional Visual Observer(s)
Increase Stand Off Distance

Risk: Propeller Injuries
Mitigations: PPE
Cut Proof Gloves
Proper Clothing
Shut off Motors if Crash Imminent
Preplanned Ditch Procedures and Locations
Limit Size and Stiffness of Propellers

Risk: Loss of Signal
Mitigations: Monitor Signal Strength

Utilize Return to Home Function

Limit Distance to Operator
Use Reliable Drones

Another important factor when evaluating risk when performing UAS missions is the risk associated with the alternative method of access. Flying a UAS to obtain inspection information may be less risky than closing a lane and using an under bridge inspection vehicle and so the mission and so any risk from UAS is less than the traditional method and therefore UAS should be utilized. Additionally, the value of the UAS mission should be considered and a more valuable missions can tolerate more risk. For instance, bridge safety inspection information collection should tolerate more risk that just taking an overall bridge photo for promotional purposes.

U.3.9 RESULTS AND DELIVERABLES

Each inspection utilizing UAS should consider the scope and goal of the inspection. A wide verity of deliverables can be created to improve the inspection documentation. UAS can be utilized for bridge and structure inspection in a wide range of applications including the following:

Figure 1- 6 Map showing inspection plan notes for the St. Croix Bridge Inspection.

Figure 1-7 A close-up view of a hard to reach area at the top the pier on the St. Croix Bridge

Figure 1-8 Bridge Deck Surveys

Figure 1-9 Routine Inspection 3D Models

Figure 1-10 Inspection Results Annotation

Figure 1-11 Individual Bridge Element Modeling

Figure 1-12 Confined Space Inspection

APPENDIX B

MNDOT METRO DISTRICT PRIORITIZED UAS BRIDGE LIST

 (1) tor

友

—路
 0500000000000000000000000000000000500000000000000000000000000000000000000500

 000505000000500

 (

盾

 MII DII

 (

 -2

届

 MiV M

 (1-

 .0005505500000000000000000000000000000000000005000

 شَ

$$
00055000000000000000
$$

000

(

